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The lattice random walks or Pólya walks were introduced by George Pólya around
1920. Here, a random walker moves on a regular grid, usually taken to be the hypercu-
bic lattice. A self-avoiding walk is a lattice random walk with one additional condition:
no point may be revisited. Random walks and self-avoiding walks have considerable
intrinsic mathematical interest, and their study involves a surprisingly broad range of
areas of mathematics, biology, chemistry and physics.

An n-step self-avoiding walk ω on the d-dimensional integer lattice Z
d is an ordered

set ω = (ω(0), ω(1), . . . , ω(n)), with each ω(i) ∈ Z
d, |ω(i + 1) − ω(i)| = 1 (Euclidean

distance), and ω(i) 6= ω(j) for i 6= j. We always take ω(0) = (0, 0, . . . , 0).

Obviously, on a d-dimensional lattice, the number of n-step random walks is (2d)n.
Denote by cd(n) the number of n-step self-avoiding walks on Z

d, by convention, c0 = 1.
A fundamental question is how big is cn? What is the exact formula for it? In one
dimension the problem becomes trivial. In two or more dimensions it seems to be a
very difficult problem.

An excellent exposition can be found in Madras and Slade [9]. Even the compu-
tation of cd(n) for small values of n is a formidable computational problem. For the
square lattice, Conway and Guttmann [3] have counted the number of self-avoiding
walks up to 51 steps. Later, Jensen [6] gave the enumeration of self-avoiding walks up
to and including 71 steps. A recent breakthrough is Hara and Slade’s [5] determination
of the asymptotic behavior of cd(n) for dimensions d > 4.

It is known that lim
n→∞

[cd(n)]1/n exists. This limit is called the self-avoiding walk

connective constant, and is denoted by µd.

The current best rigorous ranges for µ are:

µ2 ∈ [2.62002, 2.679192495]

µ3 ∈ [4.572140, 4.7476]

µ4 ∈ [6.742945, 6.8179]

µ5 ∈ [8.828529, 8.8602]

µ6 ∈ [10.874038, 10.8886].
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For d = 2 and 3, there exists a positive constant γ such that

lim
n→∞

cd(n)

µn
dn

γ−1

exists and is nonzero [1, 2, 9]. For d > 4, the above limit is conjectured to exist, with
the critical exponent γ = 1 [9]. For d = 4, the limit

lim
n→∞

cd(n)

µn
dn

γ−1(ln n)1/4

is also conjectured to exist and to be finite. Moreover, it has been conjectured that

γ =







43/32 d = 2,
1.162... d = 3,
1 d = 4.

Another fundamental question concerns the scaling limit of the two dimensional
self-avoiding walk. It is believed to be given by the Schramm-Loewner evolution (SLE)
with the parameter κ equal to 8/3, see [7] for further details.

A further question of interest is the computation of the mean square displacement
over all n-step self-avoiding walks, defined as

sd(n) ≡
1

cd(n)

∑

ω

|ω(n)|2,

where the sum is over all n-step self-avoiding walks ω.

Like cd(n), the following limits are believed to exist and be finite:











lim
n→∞

sd(n)
n2ν d 6= 4,

lim
n→∞

sd(n)

n2ν(ln n)1/4
d = 4.

(1)

where the critical exponent ν = 1/2 for d > 4 ([9]). Moreover, it has been conjectured
that [1, 8, 9]

ν =







3/4 d = 2,
0.59... d = 3,
1/2 d = 4.

The critical exponents γ and ν are thought to be universal in the sense that they
are lattice-independent (although dimension-dependent). However, no one has yet
discovered a proof of their existence, let alone a proof of universality.
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