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The g-conjecture for spheres is a conjectured complete characterization of the pos-
sible number of i-dimensional faces, 0 ≤ i ≤ d − 1, of a triangulation of a (d − 1)-
dimensional sphere (or (d−1)-sphere). An abstract simplicial complex ∆ is said to be a
triangulation of a (d−1)-sphere S

d−1 if its geometric realization (as defined in topology,
e.g., Munkres [7]) is homeomorphic to S

d−1. Let fi denote the number of i-dimensional
faces of ∆ for 0 ≤ i ≤ d − 1, with f−1 = 1. The h-vector h(∆) = (h0, h1, . . . , hd) of ∆
is defined by

d∑

i=0

hix
d−i =

d∑

i=0

fi−1(x − 1)d−i.

The Dehn-Sommerville equations assert that hi = hd−i for any triangulation of S
d−1.

The g-vector g(∆) = (g0, g1, . . . , gbd/2c) of ∆ is defined by

g0 = 1, gi = hi − hi−1, 1 ≤ i ≤ bd/2c.

Define a multicomplex to be a set Γ of nonnegative integer vectors (a1, a2, . . . , an) (for
some n) such that if (a1, . . . , an) ∈ Γ and 0 ≤ bi ≤ ai, then (b1, . . . , bn) ∈ Γ. The degree

of the vector (a1, . . . , an) is defined to be
∑

ai.

The g-conjecture for spheres. A vector (g0, g1, . . . , gbd/2c) is the g-vector of a
triangulation of S

d−1 if and only if there exists a multicomplex Γ with exactly gi vectors
of degree i, 0 ≤ i ≤ bd/2c.

There is a complicated numerical characterization of the vectors (g0, g1, . . . , gbd/2c)
appearing in the g-conjecture that we omit here, see Stanley [10]. An important special
class of triangulations of spheres are simplicial polytopes. These are convex polytopes
whose proper faces are simplices, so that their boundary is a geometric realization of
a triangulated sphere. It is known that there are triangulations of S

d−1 for d ≥ 4
that are not polytopal, i.e., do not come from simplicial polytopes. McMullen [5] first
formulated the g-conjecture for simplicial polytopes, a bold conjecture since there was
so little evidence. He was aware of the possibility that it might hold for spheres but
was reluctant to publish such a general conjecture. Stanley [9] was the first to state
explicitly the g-conjecture for spheres, and even a slightly more general statement
known as the g-conjecture for Gorenstein* complexes. The g-conjecture for simplicial
polytopes was proved by Billera and Lee [3] (sufficiency of the conjectured conditions)
and Stanley [9] (necessity). The sufficiency for simplicial polytopes shows also the
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sufficiency for spheres, so only necessity remains to be proved. The proof of necessity
for simplicial polytopes uses deep tools from algebraic geometry; McMullen [6] later
gave a more elementary proof though still very algebraic.

The theory of f -vectors remains an active research area of algebraic combinatorics.
Some important recent work includes [2, 4, 8]. For additional reading, see [1] and [10].
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