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The Main Result

The main result of this paper is to extend the
q-WZ method to prove nonterminating basic
hypergeometric series. The essential ingredient
is the q-Gosper algorithm. The motivation is the
firm believe that the q-WZ method should be
applicable to infinite series. The discovery is
based on an observation that the
Andrews-Warnnar identities have telescoping
proofs.
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Some Notation

We always assume |q| < 1. The q-shifted
factorials (a; q)n and (a; q)∞ are defined by

(a; q)n =







1, if n = 0,

(1 − a) · · · (1 − aqn−1), if n ≥ 1,

(a; q)−n =
1

(aq−n; q)n

, if n ≥ 1,

(a; q)∞ = (1 − a)(1 − aq)(1 − aq2) · · · ,

and (a1, . . . , ak; q)n = (a1; q)n · · · (ak; q)n.
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Some Notation

An rφs basic hypergeometric series is defined by

rφs

[

a1, a2, . . . , ar

b1, b2, . . . , bs
; q, z

]

:=

∞
∑

n=0

(a1, a2, . . . , ar; q)n

(q, b1, . . . , bs; q)n

[

(−1)nq(
n

2
)
]1+s−r

zn, (1)

where q 6= 0 when r > s+ 1.
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Some Notation

An rψs bilateral basic hypergeometric series is defined
by

rφs





a1, . . . , ar

b1, . . . , bs
; q, x





:=

∞
∑

k=0

(a1; q)k · · · (ar; q)k

(b1; q)k · · · (bs; q)k

xk

(q; q)k

(

(−1)kq(
k

2
)
)s−r+1

. (2)

It is assumed that q, z and the parameters are
such that each term of the series is well-defined.
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Hypergeometric Term

We say that tk is a hypergeometric term if tk+1

tk
is

a rational function in k, i.e.,

tk+1

tk
=
P (k)

Q(k)
,

where P (k) and Q(k) are polynomials in k.
For example,

t(k) = k!, ak,
(3k + 1)!

(5k + 4)!
.
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q-hypergeometric Term

Let x = qk. We say that tk is a q-hypergeometric
term if

tk+1

tk
= r(x),

where r(x) is a rational function in x.
For example,

tk =
(a; q)k

(q; q)k
zk, k > 0.

where (b; q)k = (1 − b)(1 − bq) · · · (1 − bqk−1).
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The Gosper’s Algorithm

The Gosper’s algorithm is a milestone for proving
hypergeometric identities. Zeilberger built up a
powerful machinery based on the Gosper’s algorithm.

R.W. Gosper, Decision procedure for indefinite
hypergeometric summation, Proc. Natl. Acad. Sci.
USA 75(1) (1978) 40–42.

The q-Gosper algorithm is q-analogue of the Gosper’s
algorithm, which was introduced by Koornwinder.

T.H. Koornwinder, On Zeilberger’s algorithm and its
q-analogue, J. Comput. Appl. Math. 48 (1993) 91–111.
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The Zeilberger’s Algorithm and the WZ-Method

H.S. Wilf and D. Zeilberger developed the
Zeilberger’s algorithm and the WZ-method for
proving identities on hypergeometric series.

They were awarded the Steele Prize for
Seminal Contribution (1998).

Böing-Koepf and T.H. Koornwinder gave
detailed discussions about the q-analogues.
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The Package

There are many packages to implement the
Gosper’s algorithm, the Zeilberger’s algorithm,
the WZ-method and their q-analogues. We use

the package qsum6.mpl to implement the q-Gosper
algorithm, which is maintained at the following
site

http://www.mathematik.uni-
kassel.de/ koepf/Publikationen/index.html#down
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Zeilberger’s Algorithm

The Zeilberger’s algorithm uses the Gosper’s
algorithm to find polynomials ai(n) which are free
of k and a hypergeometric term G(n, k) such that

a0(n)F (n, k) + a1(n)F (n+ 1, k) + · · · + ad(n)F (n+ d, k)

= G(n, k + 1) −G(n, k).

Summing over k, we obtain a recursion:

a0(n)f(n) + · · · + ad(n)f(n+ d) = 0

where f(n) =
∑

k

F (n, k).
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Applications of Zeilberger’s algorithm

The identities are verified by finding recurrences
and comparing initial values.

Chinese identity (Li, Shan-Lan 1811–1882):

n
∑

k=0

(

n

k

)2(

m+ 2n− k

2n

)

=

(

m+ n

n

)2

,

Its q-analogue (Shi)

n
∑

k=0

[

n

k

]2[

m+ 2n− k

2m

]

qk2

=

[

m+ n

n

]2

,

It is a special case of the q-Saalschütz identity.
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Andrews-Warnaar Identities

We utilize the telescoping method to prove the
following two identities

( ∞
∑

n=0

(−1)nanq(
n

2)
)( ∞

∑

n=0

(−1)nbnq(
n

2)
)

= (q, a, b; q)∞

∞
∑

n=0

(abqn−1; q)n

(q, a, b; q)n
qn, (3)

and
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Andrews-Warnaar Identities

1+
∞

∑

n=1

(−1)nq(
n

2)(an + bn)

= (a, b, q; q)∞

∞
∑

n=0

(ab/q; q)2n

(q, a, b, ab; q)n
qn, (4)

which were proved by Andrews and Warnaar.

G.E. Andrews and S. Ole Warnaar, The product
of partial theta functions. Adv. Applied Math. 39
(2007) 116–120.
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Telescoping for(3) and (4)

Proof. Let g(a) and f(a) denote the left side and
right side of (3), respectively. Note that the left
hand side contains two factors, one is concerned
with a, and the other is involved with b.
Comparing the coefficients of ai, i = 0, 1, 2, . . .,
yields the iteration relation:

g(a) = (1 − a)g(aq) + aqg(aq2). (5)

However, it is not clear how to derive the same
iteration relation for the right hand side, because
it involves both a and b.
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Telescoping for(3) and (4)

We will first verify that f(a) satisfies the same
iteration relation as g(a) by constructing a
telescoping relation, which gives a hint of the
possibility that one can use the q-Gosper
algorithm to achieve the same goal. This
incidental observation was in fact the starting
point of this paper. Let

f(a) =
∞

∑

n=0

Dn(a), Dn(a) = (q, a, b; q)∞
(abqn−1; q)nq

n

(q, a, b; q)n

.
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Telescoping for(3) and (4)

If we can find un satisfying

Dn(a) − (1 − a)Dn(aq) − aqDn(aq2) = un+1 − un

and

lim
n→+∞

un = u0,

then sum n over the non-negative integers and show that
f(a) satisfies the same recurrence relation as g(a). un can
be solved by applying the q-Gasper algorithm to

Dn(a) − (1 − a)Dn(aq) − aqDn(aq2).
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Telescoping for(3) and (4)

In fact, we obtain

un = −
(1 − qn)(1 − bqn−1)(abqn; q)n(q, a, b; q)∞aq

n

(1 − aqn)(1 − abq2n−1)(q, a, b; q)n
.

Let G(a) = g(a) − f(a), then G(a) satisfies the
recurrence relation

G(a) = (1 − q)G(aq) + aqG(aq2).

Iterating the above identity, we find

G(a) = AnG(aqn+1) +BnG(aqn+2),
– p. 18/60



Telescoping for(3) and (4)

where

A0 = (1 − q), A1 = (1 − a)(1 − aq) + aq,

B0 = aq, B1 = (1 − a)aq2,

An+1 = (1 − aqn+1)An + aqn+1An−1, Bn+1 = aqn+2An n ≥ 1.

We can rewrite the recurrence relation of An as

An+1 − An = −aqn+1(An − An−1).
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Telescoping for(3) and (4)

Iterating the above identity, we have

|An+1 − An| = | − aqn+1(An − An−1)| = · · ·

= |(−1)nanq(n+1)!(A1 − A0)|

≤ |(−1)nanq(n+1)!|(|A1| + |A0|).

So, for fixed a, q, the limit lim
n→+∞

An exists. Since

Bn+1 = aqn+2An, then the limit lim
n→+∞

Bn exists.

– p. 20/60



Telescoping for(3) and (4)

It is easy to verify that G(0) = g(0) − f(0) = 0. So
we can deduce that

G(a) = G(0)

(

lim
n→+∞

An + lim
n→+∞

Bn

)

= 0.

Using a similar method, we can prove the identity
(4).

– p. 21/60



The Key Idea

For the identities (3) and (4), the recurrence
relations of their left hand sides are easy to
establish. Although their right hand sides contain
infinite q-shifted factorials, we can still use the
q-Gosper algorithm to solve un.

The key idea is that we can deal with infinite
q-shifted factorials. If we go through the
procedure of the q-Gosper algorithm, we will see
that the q-shifted factorials will result in rational
functions after divisions.

– p. 22/60



The Key Idea

For example, for the identity (3), Dn(q) contains
infinite q-shifted factorials (q, a, b; q)∞, but the
ratio

Dn+1(a) − (1 − a)Dn+1(aq) − aqDn+1(aq
2)

Dn(a) − (1 − a)Dn(aq) − aqDn(aq2)

is a rational function in qn, it follows that Dn(q) is
a q-hypergeometric term. Therefore, we can
directly use the q-Gosper to solve un.
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The Key Idea

As will be seen later, even if the recurrence relation of any
side of an identity is not known, Chen, Hou and Mu
provided a method to get the recurrence relations of both
sides of the identity.

Examining the telescoping proofs of (3) and (4), we find that
the q-Gosper algorithm does apply to q-hypergeometric
terms which contain infinite q-shifted factorials.
Consequently, the q-Zeilberger algorithm should not be
afraid of infinite q-shifted factorials. This is indeed the idea
for the q-WZ method for infinite q-series.
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Nonterminating Series

Note that the q-Zeilberger algorithm can not be
directly used to prove nonterminating basic
hypergeometric identities. The reason is that the
summand is not a bivariate q-hypergeometric
term in the strict sense.
For nonterminating hypergeometric identities:

the Gauss’ summation formula (I.M. Gessel)

Saalschütz summation formula
(T.H. Koornwinder)
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Chen-Hou-Mu’s Method

Recently, Chen, Hou and Mu provided a
systematic method for proving nonterminating
basic hypergeometric identities by means of the
q-Zeilberger algorithm.

W.Y.C. Chen, Q.H. Hou and Y.P. Mu,
Nonterminating basic hypergeometric series and
the q-Zeilberger algorithm, Proc. Edinburgh
Math. Soc. to appear.
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Chen-Hou-Mu’s Method

Chen, Hou and Mu’s method can be stated as
follows. Let

f(x1, x2, . . . , xl) =
∞

∑

k=0

tk(x1, x2, . . . , xl),

where tk(x1, x2, . . . , xl) is a q-hypergeometric
term. They first set one or more parameters
x1, x2, . . . , xl to x1q

n, x2q
n, . . . , xlq

n. This is the key
step, it makes the summand
tk(x1q

n, x2q
n, . . . , xlq

n) become a bivariate
q-hypergeometric term.
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Chen-Hou-Mu’s Method

Then the q-Zeilberger algorithm is utilized to
obtain the recurrence relation. Once they obtain
the recurrence relations of both sides, the
following theorem is used to prove the identity.
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Chen-Hou-Mu’s Method

Theorem (Chen, Hou and Mu, 2007) Suppose that

f(z) = a1(z)f(zq) + a2(z)f(zq2) + · · · + ad(z)f(zqd),

and there exist w1, . . . , wd ∈ C and M > 0 such that

|ai(z) − wi| ≤ M |z|, 1 ≤ i ≤ d,

and
|wd| + |wd−1 + wd| + · · · + |w2 + · · · + wd| < 1.

Then f(z) is uniquely determined by f(0) and the
functions ai(z).
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Chen-Hou-Mu’s Method for (3) and (4)

The Andrews-Warnnar identities (3) and (4) can
be proved by Chen, Hou and Mu’s method.

For (3), set a to aqn, we can get that fact that both
sides of (3) satisfy the same recurrence relation.
Utilizing the above theorem, we can verifty this
identity.

For (4), we first assume that |a| < 1, using the
same method, we can prove that (4) holds for
|a| < 1. By analytic continuation, we may drop
the assumption that |a| < 1.
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The q-WZ method for Infinite Series

Now we have a version of the q-WZ method for
infinite series, keeping in mind that the q-WZ
method has the advantage of generating
certificates to verify identities.

Our method can be described as follows. We aim
to prove

∞
∑

k=N0

Fk(a1, a2, . . . , al) = r(a1, a2, . . . , al), (6)
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The q-WZ method for Infinite Series

where l is an positive integer, N0 = 0 or

N0 = −∞,
∞
∑

k=N0

Fk(a1, a2, . . . , al) is the form of the

right hand side of (1) or (2) and

r(a1, a2, . . . , al) =

γ
∏

i=1

(ci(a1, a2, . . . , al); q)∞

λ
∏

j=1

(dj(a1, a2, . . . , al); q)∞

,

ci(a1, a2, . . . , al) and dj(a1, a2, . . . , al) are
functions decided by a1, a2, . . . , al.
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The q-WZ method for Infinite Series

First, we set some parameters a1, . . . , ap,
1 ≤ p ≤ l (without loss of generality) to
a1q

n, . . . , apq
n, i.e.,

∞
∑

k=N0

Fk(a1q
n, . . . , apq

n, ap+1, . . . , al)

= r(a1q
n, . . . , apq

n, ap+1, . . . , al).

We remark that the choice of the parameters
a1, a2, . . . , ap is made by human considerations.
Nevertheless, there are not many choices for a
few parameters.
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The q-WZ method for Infinite Series

If r(a1q
n, . . . , apq

n, ap+1, . . . , al) 6= 0, then let

F (n, k) =
Fk(a1q

n, . . . , apq
n, ap+1, . . . , al)

r(a1qn, . . . , apqn, ap+1, . . . , al)
.

Otherwise, for r(a1q
n, . . . , apq

n, ap+1, . . . , al) = 0,
put

F (n, k) = Fk(a1q
n, . . . , apq

n, ap+1, . . . , al).
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The q-WZ method for Infinite Series

Once having established that

∞
∑

k=N0

F (n, k) = constant, n = 0, 1, 2, . . . . (7)

we can let n = 0 and select special cases of
a1, a2, . . . , al to determine the constant. This
completes the proof of identity (6).
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The q-WZ method for Infinite Series

To use the q-WZ method, let f(n) denote the left

hand side of (7), i.e., f(n) =
∞
∑

k=N0

F (n, k). Then,

we try to prove that f(n+ 1) − f(n) = 0 for every
nonnegative integer n. One way to achieve this
goal is find a function G(n, k) such that

F (n+ 1, k) − F (n, k) = G(n, k + 1) −G(n, k).
(8)

Then, sum both sides of (8) from k = N0 to +∞,
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The q-WZ method for Infinite Series

under suitable hypotheses, we can show
f(n+ 1) − f(n) = 0 for every nonnegative integer n. A pair
of functions (F (n, k), G(n, k)) that satisfy (8) is called a WZ

pair.

The question is how to find G(n, k)? In fact, it can be solved
by applying the q-Gasper algorithm to F (n+ 1, k)−F (n, k).

To do so, we shall show that F (n+ 1, k) − F (n, k) is a
q-hypergeometric term. If r(a1, . . . , al) = 0, obviously,
F (n+ 1, k) − F (n, k) is a q-hypergeometric term.
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The q-WZ method for Infinite Series

If r(a1, . . . , al) 6= 0, then let

M1 =
r(a1q

n+1, . . . , apq
n+1, ap+1, . . . , al)

r(a1qn, . . . , apqn, ap+1, . . . , al)
,

M2 =
Fk+1(a1q

n+1, . . . , apq
n+1, ap+1, . . . , al)

Fk(a1qn+1, . . . , apqn+1, ap+1, . . . , al)
,

M3 =
Fk+1(a1q

n, . . . , apq
n, ap+1, . . . , al)

Fk(a1qn+1, . . . , apqn+1, ap+1, . . . , al)
,

M4 =
Fk(a1q

n, . . . , apq
n, ap+1, . . . , al)

Fk(a1qn+1, . . . , apqn+1, ap+1, . . . , al)
.
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The q-WZ method for Infinite Series

Since M1 is a rational function in qn and is
independent on k, M2,M3,M4 are rational
functions in qk, then

F (n+ 1, k + 1) − F (n, k + 1)

F (n+ 1, k) − F (n, k)
=
M2 −M1M3

1 −M1M4

is a rational function in qk, i.e.,
F (n+ 1, k) − F (n, k) is a q-hypergeometric term.
So we can employ the q-Gosper algorithm to
decide whether such a G(n, k) exists or not.
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The q-WZ method for Infinite Series

The following theorem is used to prove identities
and discover new identities, which was provided
by H.S. Wilf and D. Zeilberger.

H.S. Wilf and D. Zeilberger, Rational functions
certify combinatorial identities, J. Amer. Math.
Soc. 3(1) (1990) 147–158.
In fact, we extension looks the same as the
original q-WZ method. We just need to pretend to
treat the infinite q-shifted factorials by the finite
counterparts after some parameters ai to aiq

n.
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The q-WZ method for Infinite Series

The following conditions are used in the theorem:

(C1) For each integer n ≥ 0, lim
k→±∞

G(n, k) = 0.

(C2) For each integer k, the limit

fk = lim
n→∞

F (n, k) (9)

exists and is finite.
(C3) We have lim

L→∞

∑

n≥0
G(n,−L) = 0.
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The q-WZ method for Infinite Series

Theorem (H.S. Wilf and D. Zeilberger, 1990) Let
(F (n, k), G(n, k)) satisfy (8). If (C1) holds then we have the
identity

∑

k

F (n, k) = constant, n = 0, 1, 2, . . . . (10)

If (C2) and (C3) hold then we have the identity (companion
identity)

∞
∑

n=0

G(n, k) =
∑

j≤k−1

(fj − F (0, j)), (11)

where fj is defined by (9). – p. 42/60



q-Gauss sum

We give some examples.

Example 1. The q-Gauss sum is

∞
∑

k=0

(a, b; q)k

(q, c; q)k

( c

ab

)k

=
(c/a, c/b; q)∞
(c, c/ab; q)∞

,

where |c/ab| < 1.
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q-Gauss sum

Consider the pair functions

F (n, k) =
(aqn, b; q)k(cq

n, c/ab; q)∞
(q, cqn; q)k(c/a, cqn/b; q)∞

( c

ab

)k

,

G(n, k) = −
(a− aqk)(aqn, b; q)k(cq

n, c/ab; q)∞
(q, cqn; q)k(c/a, cqn/b; q)∞(1 − aqn)

( c

ab

)k

qn.

Since |c/ab| < 1, it is easy to verify that the two
functions (F (n, k), G(n, k)) satisfy the relation (8)
and conditions (C1), (C2) and C(3).
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q-Gauss sum

By (10), we have

∞
∑

k=0

F (n, k) = constant, n = 0, 1, 2, . . . .

In order to determine the constant, let c = 0 and
n = 0, then the constant is 1, so we have

∞
∑

k=0

F (0, k) = 1,

which is q-Gauss sum.
– p. 45/60



The Companion Identity of the q-Gauss sum

By (11), we obtain the companion identity of the
q-Gauss sum is

k
∑

j=0

(a, b; q)j

(q, c; q)j

( c

ab

)j

=
(c/b; q)∞
(c; q)∞

k
∑

j=0

(b; q)j

(q; q)j

( c

ab

)j

+
(a, b; q)k+1c

k+1

(q; q)k(c; q)k+1akbk+1

∞
∑

n=0

(aqk+1, c/b; q)n

(a; q)n+1(cqk+1; q)n
qn.
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The 6φ5 Sum

Example 2.
The sum of a very-well-poised 6φ5 series is

∞
∑

k=0

(1 − aq2k)(a, b, c, d; q)k

(1 − a)(q, aq/b, aq/c, aq/d)k

( aq

bcd

)k

=
(aq, aq/bc, aq/bd, aq/cd; q)∞
(aq/b, aq/c, aq/d, aq/bcd; q)∞

, |aq/bcd| < 1.

(12)
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The 6φ5 Sum

It is easy to check that when |aq/bcd| < 1 the two
functions

F (n, k) =
(1 − aqn+2k)(aqn, bqn, c, d; q)k

(1 − aqn)(q, aq/b, aqn+1/c, aqn+1/d; q)k

×
(aq/b, aqn+1/c, aqn+1/d, aq/bcd; q)∞
(aqn+1, aq/bc, aq/bd, aqn+1/cd; q)∞

( aq

bcd

)k
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The 6φ5 Sum

and

G(n, k) =
(1 − qk)(c, d; q)k(a/b, a/bcd; q)∞

(aqn/c, aqn/d; q)k(aqn, aqn/cd; q)∞

×
(aqn, bqn; q)k(aq

n/c, aqn/d; q)∞
(a/bd, a/bc; q)∞(aqn+k − c)(aqn+k − d)

×
(a− bc)(a− bd)(aqn − cd)

(a/b, q; q)k(a− bcd)(bqn − 1)

( aq

bcd

)k

qn

are a WZ-pair and satisfy the conditions (C1),
(C2) and (C3).
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The 6φ5 Sum

Then, by (10),
∞
∑

k=0

F (n, k) is a constant. Let n = 0

and a = 0, so the constant is 1, then we have

∞
∑

k=0

F (0, k) = constant = 1,

which completes the proof. By (11), we obtain the
companion identity of (12)
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The Companion Identity of 6φ5

k
∑

j=0

(1 − aq2j)(a, b, c, d; q)j

(1 − a)(q, aq/b, aq/c, aq/d; q)j

( aq

bcd

)k

=
(aq, aq/cd; q)∞
(aq/c, aq/d; q)∞

k
∑

j=0

(c, d; q)j

(q, aq/b; q)j

( aq

bcd

)j

+
b(aq; q)k(b, c, d; q)k+1

(q, aq/b; q)k(aq/c, aq/d; q)k+1

( aq

bcd

)k+1

×

∞
∑

n=0

(aqk+1, bqk+1; q)n(aq/cd; q)n

(b; q)n+1(aqk+2/c, aqk+2/d; q)n
qn.
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Ramanujan’s 1ψ1 Sum

Example 3. The Ramanujan’s 1ψ1 sum is

∞
∑

k=−∞

(a; q)k

(b; q)k
zk =

(q, b/a, az, q/az; q)∞
(b, q/a, z, b/a; q)∞

,

where |b/a| < |z| < 1.
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Ramanujan’s 1ψ1 Sum

The functions

F (n, k) =
(aqn; q)k(bq

n, q1−n/a, z, b/az; q)∞
(bqn; q)k(q, b/a, azqn, q1−n/az; q)∞

zk,

G(n, k) =
(aqn; q)k(bq

n, q−n/a, z, b/az; q)∞(1 − azqn)

(bqn; q)k(q, b/a, azqn, q−n/az; q)∞(z − azqn)
zk

are a WZ pair. Since |b/a| < |z| < 1, then we can
verify that G(n, k) satisfies the condition (C1), so
by (10),
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Ramanujan’s 1ψ1 Sum

∞
∑

k=−∞

F (n, k) = constant, n = 0, 1, 2, . . . .

In order to determine the constant, let n = 0 and
b = q and utilize the q-binomial theorem, we get
the constant is 1. Inserting the constant 1 and
n = 0 into the above identity, we obtain the
Ramanujan’s 1ψ1 sum.
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Bailey’s 6ψ6 Sum

Example 4. The Bailey 6ψ6 sum is

∞
∑

k=−∞

(1 − aq2k)(b, c, d, e; q)k

(1 − a)(aq/b, aq/c, aq/d, aq/e; q)k

(

a2q

bcde

)k

=
(aq, aq/bc, aq/bd, aq/be, aq/cd; q)∞

(aq/b, aq/c, aq/d, aq/e, q/b; q)∞

×
aq/ce, aq/de, q, q/a; q)∞

(q/c, q/d, q/e, a2q/bcde; q)∞
.
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Bailey’s 6ψ6 Sum

The WZ-pair that works here is

F (n, k) =
(1 − aqn+2k)(aq/b, aq/c, aqn+1/d; q)∞

(1 − aqn)(aqn+1, aq1−n/bc, aq/be, aq/ce; q)∞

×
(bqn, cqn, d, e; q)k(aq

n+1/e, q1−n/b; q)∞
(aq/b, aq/c, aqn+1/d, aqn+1/e; q)k(aq/bd; q)∞

×
(q1−n/c, q/d, q/e, a2q/bcde; q)∞
(aq/cd, aqn+1/de, q, q1−n/a; q)∞

(

a2q

bcde

)k

and
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Bailey’s 6ψ6 Sum

G(n, k) =
(bqn, cqn, d, e; q)k(a/b, a/c; q)∞

(1 − bqn)(1 − cqn)(a− ad)(1 − e)(a2 − bcde)

×
(aqn/d, aqn/e, q−n/b, q−n/c, a2/bcde; q)∞

(a/b, a/c; q)k(a/bd, a/be, aqn, aq−n/bc; q)∞

×
(−1 + aqn)(a− bd)(1/d, 1/e; q)∞

(aqn+k − d)(aqn/d; q)k(aqn+k − e)(aqn/e; q)k

×
(a− be)(a− cd)(a− ce)(aqn − de)qn

(a/cd, a/ce, aqn/de, q, q−n/a; q)∞

(

a2q

bcde

)k

.
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Bailey’s 6ψ6 Sum

Since |a2q/bcde| < 1, we can verify that G(n, k)
satisfies the condition (C1), so by (10),

∞
∑

k=−∞

F (n, k) = constant, n = 0, 1, 2, . . . . (13)

In order to determine the constant, let n = 0 and
b = a, by the the sum of a very-well-poised 6φ5

series (12), we have
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Bailey’s 6ψ6 Sum

∞
∑

k=0

(1 − aq2k)(a, c, d, e; q)k

(1 − a)(aq/c, aq/d, aq/e; q)k

×
(aq, aq/cd, aq/ce, aq/de; q)∞
(aq/c, aq/d, aq/e, aq/cde; q)∞

( aq

cde

)k

= 1.

Then, let n = 0, we have
∞

∑

k=−∞

F (0, k) = constant = 1,

which completes the proof.
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Thank You
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