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an Inequality of Bóna-McLennan-White

William Y.C. Chen and Elena L. Wang

Center for Applied Mathematics

Tianjin University

Tianjin 300072, P.R. China

Emails: 1chenyc@tju.edu.cn, 2ling wang2000@tju.edu.cn

Dedicated to Persi W. Diaconis on the Occasion of His 80th Birthday

Abstract

This paper is concerned with a duality between r-regular permutations

and r-cycle permutations, and a monotone property due to Bóna-McLennan-

White on the probability pr(n) for a random permutation of {1,2, . . . ,n} to

have an r-th root, where r is a prime. For r = 2, the duality relates per-

mutations with odd cycles to permutations with even cycles. In general,

given r ≥ 2, we define an r-enriched permutation to be a permutation with

r-singular cycles colored by one of the colors 1,2, . . . ,r− 1. In this setup,

we discover a duality between r-regular permutations and enriched r-cycle

permutations, which yields a stronger version of an inequality of Bóna-

McLennan-White. This answers their question of seeking a fully combi-

natorial understanding of the monotone property. When r is a prime power

ql , we further show that pr(n) is monotone without using generating func-

tions. In the case n+ 1 ̸≡ 0 (mod q), the equality pr(n) = pr(n+ 1) has

been established by Chernoff.

Keywords: r-regular permutations, nearly r-regular permutations, r-cycle permu-
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1 Introduction

This paper is concerned with a duality between r-regular permutations and r-cycle

permutations, which are related to permutations with an r-th root, see, e.g., [6, 8,

14]. For an integer r≥ 2, we call a cycle r-regular if its length is not divisible by r

and call a cycle r-singular if its length is divisible by r. Suppose that permutations

are represented in the cycle notation. A permutation is called r-regular if all of

its cycles are r-regular, and an r-cycle permutation is referred to a permutation

with r-singular cycles. These terms were coined by Külshammer, Olsson, and

Robinson [14]. As is customary, for n ≥ 1, Sn stands for the set of permutations

of [n] = {1,2, . . . ,n}. Given a permutation σ ∈ Sn, it is said to have an r-th root

if there exists a permutation π ∈ Sn such that πr = σ . Permutations with an r-th

root can be characterized in terms of the cycle lengths [21, p. 158]. The set of

permutations of [n] with an r-th root is denoted by Sr
n. The exponential generating

function of |Sr
n| has been derived by Bender [2], see also [21, p. 159]. When r is

a prime power, the characterization takes a simpler form.

We shall follow the terminology in [14]. Throughout the paper, Regr(n) and

Cycr(n) will stand for the set of r-regular permutations of [n] and the set of r-

cycle permutations of [n], respectively. Note that NODIVr(n) and PERMr(n) are

used in [8]. For r ≥ 2 and n = 0, set |Regr(0)| = 1 and |Cycr(0)| = 1. Clearly,

|Cycr(n)|= 0 if n ̸≡ 0 (mod r).

The enumeration of r-regular permutations dates back to Erdős and Turán [11].

By using generating functions, they showed that for n ≥ 1, and r a prime power,

the proportion of r-regular permutations in Sn equals

⌊n/r⌋

∏
k=1

rk−1
rk

.

It was realized later that the above formula holds naturally for an arbitrary integer

r ≥ 2, for example, see [17].

There are various ways to count Regr(n) and Cycr(n), see [1, 4, 6, 8, 12,

17, 21]. In particular, for r ≥ 2, Bóna, McLennan and White [8] presented a

bijective argument to deduce the number of r-regular permutations of [n] from the
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number of r-regular permutation of [n− 1]. As a consequence, they confirmed

the conjecture of Wilf [21] that the probability p2(n) for a random permutation of

[n] to have a square root is monotonically nonincreasing in n. Such permutations

have been called square permutations [5]. For example, (1 2 3 4)(5 6 7 8) is a

square permutation and it has a square root (1 5 2 6 3 7 4 8). In a larger sense, for

any prime r, they [8] proved that the probability pr(n) that a random permutation

of [n] has an r-th root is nonincreasing in n.

Notice that the monotone property does not always hold in general. For ex-

ample, when r = 6, we have p6(4) = 1/6 but p6(5) = 1/3. One may consult the

sequence A247005 in OEIS [19] for the number of permutations of [n] with an

r-th root. Nonetheless, Bóna, McLennan and White showed that for any r ≥ 2,

pr(n)→ 0,

as n→ ∞.

The table below exhibits the values of pr(n) for r = 2,3,5 and 1≤ n≤ 12.

r
n 1 2 3 4 5 6 7 8 9 10 11 12

2 1
1
2

1
2

1
2

1
2

3
8

3
8

17
48

17
48

29
96

29
96

209
720

3 1 1
2
3

2
3

2
3

5
9

5
9

5
9

1
2

1
2

1
2

37
81

5 1 1 1 1
4
5

4
5

4
5

4
5

4
5

18
25

18
25

18
25

Table 1: Values for pr(n).

As set forth by Bóna, McLennan and White, their proof of the monotone prop-

erty is mostly combinatorial, and they left a question of searching for a fully com-

binatorial reasoning, which amounts to a combinatorial understanding of the fol-

lowing inequality ∣∣Cycr2(mr2)
∣∣≤ ∣∣Regr(mr2)

∣∣ , (1.1)
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which we shall call the Bóna-McLennan-White inequality, or the BMW inequal-

ity, for short.

The case r = 2 deserves a special mention. The sets Reg2(2n) and Cyc2(2n)

often appear as Odd(2n) and Even(2n), respectively. Both of them are enumer-

ated by ((2n−1)!!)2, see A001818 in OEIS [19]. In the literature, 2-regular per-

mutations are also known as odd order permutations, which are related to ballot

permutations, see, for example, [3, 16, 20]. However, even order permutations are

referred to permutations with at least one even cycle. These terms originated from

the notion of the order of an element in a group.

There is a bijection between Odd(2n) and Even(2n), which does not seem to

be as obvious as it looks at first glance. A correspondence has been found by

Sayag based on the first fundamental transformation or the canonical representa-

tion of permutations, see Bóna [7, Lemma 6.20]. An intermediate structure, which

we call nearly odd order permutations, was introduced in [9]. It induces incremen-

tal transforms from a permutation in Odd(2n) to a permutation in Even(2n).

Can these incremental transformations be carried over to the general case

r ≥ 2? An intuitive trial does not seem to work as indicated by small examples.

The objective of this paper is to introduce the structure of r-enriched permutations,

from which a suitable notion with regard to the duality comes into being. In this

setting, we find a bijection between r-regular permutations of [rn] and enriched

r-cycle permutations of [rn]. As an immediate consequence, we achieve a com-

binatorial comprehension of the BMW inequality, or a stronger version, strictly

speaking. So we have provided an answer to the question of Bóna, McLennan and

White for any prime r ≥ 3. For the case r = 2, we fill up with some discussions

for the sake of completeness.

Resorting to the stronger version of the Bóna-McLennan-White inequality and

the characterization of permutations with an r-th root, for a prime power r, due

to Knopfmacher and Warlimont [21, p. 158], we take a step further to show that

for any prime power r = ql , pr(n) is monotone, being aware that Chernoff [10]

established the equality pr(n) = pr(n+ 1) in the case n+ 1 ̸≡ 0 (mod q), and
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Leaños, Moreno and Rivera–Martı́nez [15] presented two approaches, with one

using generating functions, and the other being combinatorial. Our approach to

the monotone property may be considered combinatorial, at least in the sense that

no generating functions played no roles.

2 r-Enriched permutations

The aim of this section is to establish a duality between r-regular permutations

of [rn] and enriched r-singular permutations of [rn], for r ≥ 2 and n ≥ 1. Given

r≥ 2, by saying that a permutation is enriched we mean that each r-singular cycle

is colored by one of r− 1 colors. Bear in mind that r-regular cycles is never

colored.

Given r ≥ 2, we shall use the symbol ∗ to signify an r-enriched structure.

For example, Cyc∗r (rn) denotes the set of enriched r-cycle permutations of [rn].

Throughout, we assume that a permutation is represented in the cycle notation,

with each cycle being treated as a linear order with the minimum element placed

at the beginning, and assume that the cycles of a permutation are listed in the

increasing order of their minimum elements. We use the subscript of a cycle to

denote the color assigned to it. For example, for r = 3, (1 2 4)2 (3)(5 6) represents

an 3-enriched permutation for which the 3-singular cycle (1 2 4) is colored by 2.

To transform an r-regular permutation of [rn] to an enriched r-singular permu-

tation of [rn], we introduce an intermediate structure like nearly odd permutations

emerging in [9]. For n≥ 1, we say that a permutation σ of [n] is nearly r-regular

if its cycles are all r-regular except that the one containing 1 is r-singular. The

notation NRegr(n) stands for the set of all nearly r-regular permutations of [n].

For example, for r = 3, (1 2 4)(3)(5 6) is a nearly 3-regular permutation.

As an intermediate structure, enriched nearly r-regular permutations lead to

a bridge between r-regular permutations and enriched r-cycle permutations. By

iteration, we discover a duality between Regr(rn) and Cyc∗r (rn). For r = 2, it

reduces to a duality between Odd(2n) and Even(2n).
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Theorem 2.1. For any r ≥ 2, there is a bijection Φ from Regr(rn) to Cyc∗r (rn).

Moreover, if σ ∈ Regr(rn) and the cycle containing 1 in σ has length l = rk+ i,

1 ≤ i ≤ r− 1, then Φ(σ) ∈ Cyc∗r (rn), where the cycle containing 1 in Φ(σ) has

length rk+ r.

To prove the theorem, let Qr,k(n) denote the set of permutations of [n], where

the length of the cycle containing 1 is k, and the other cycles are r-regular. We

first construct a bijection between Qr,k(n) and Qr,k+1(n) by applying an elegant

bijection of Bóna, Mclennan and White in [8, Lemma 2.1], which is a paradigm

of a recursive algorithm.

Lemma 2.2 (Bóna, Mclennan and White [8]). For all r≥ 2 and n+1 ̸≡ 0 (mod r),

there is a bijection Ψ from Regr(n)× [n+1] onto Regr(n+1).

To employ the bijection, we do not really have to adjust the elements of the

underlying sets to fit in the above decorated form. It seems to be more convenient

to harness the following raw version, and it might be informative to reproduce

the proof. For any nonempty set S, we use Regr(S) to denote the set of r-regular

permutations of S.

Lemma 2.3 (A Reformulation). Let S be a nonempty finite set. For any r ≥ 2, if

|S| ̸≡ 0 (mod r), then there is a bijection ∆ from Regr(S) to the set of pairs (x,π),

where x ∈ S and π is in Regr(S\{x}).

Proof. Assume that σ is in Regr(S) and |S| ̸≡ 0 (mod r). From now on, we shall

use |σ | to denote the number of elements of σ . Let D1 denote the first cycle of σ ,

l be its length, σ̃ = σ −D1 and let x be the last entry in D1. In effect, the map ∆

will remove x in D1 and turn it into a distinguished element. We encounter three

cases.

Case 1: l = 1. Then set ∆(σ) = (x, σ̃). In this case, the element x is smaller than

every element of σ̃ .

Case 2: l ̸≡ 1 (mod r). Then remove x from D1 to get C1 and set ∆(σ) = (x,C1 σ̃).

In this case, the element x is bigger than the smallest element of C1 σ̃ . Since

l ̸≡ 0,1 (mod r), we have |C1|= l−1 ̸≡ −1,0 (mod r).
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Case 3: l ≡ 1 (mod r) and l ̸= 1. Let x̃ be the second-to-last element in D1 and C1

be the cycle obtained from D1 by removing x and x̃. Since |σ̃ |+1= |σ |− l+1 ̸≡ 0

(mod r), we can apply ∆−1 to (x̃, σ̃) to get π̃ . Then set ∆(σ) = (x,C1 π̃). In this

case, the element x is bigger than the smallest element of C1 π̃ and |C1|= l−2≡
−1 (mod r).

It remains to verify that ∆ is a bijection. Given a pair (x,π) where x ∈ S and

π is an r-regular permutation of S \{x} with |π|+1 ̸≡ 0 (mod r). Let C1 denote

the first cycle of π , l be its length and let π̃ = π −C1. Conversely, the map ∆−1

will place x as the last entry in the first cycle of ∆−1(x,π). Accordingly, we face

with three possibilities.

Case 1: The element x is smaller than every element of π . Then set ∆−1(x,π) =

(x)π . In this case, |D1|=1.

Case 2: The element x is bigger than the smallest element of π and l ̸≡ −1

(mod r). Let D1 be C1 with x appended to the end of C1. Then set ∆−1(x,π) =

D1 π̃ . Notice that l ̸≡ −1,0 (mod r), and so |D1|= l +1 ̸≡ 0,1 (mod r).

Case 3: The element x is bigger than the smallest element of π and l ≡ −1

(mod r). Under the conditions |π|− l≡ |π|+1 (mod r) and |π|+1 ̸≡ 0 (mod r),

we have |π−C1| = |π| − l ̸≡ 0 (mod r). Thus we can apply ∆ to π −C1 to get

(x̃, σ̃). Let D1 be C1 with x̃x appended to the end. Then set ∆−1(x,π) = D1 σ̃ .

Notice that in this case |D1| = l + 2 ≡ 1 (mod r) and |D1| ̸= 1. This completes

the proof.

We now turn to the construction of the bijection ϕ . The following lemma

is the building block of the correspondence between r-regular permutations and

enriched r-cycle permutations. It depends upon the Lemma of Bóna, Mclennan

and White, as restated in Lemma 2.3.

Lemma 2.4. For all r ≥ 2 and k ≥ 1, if n− k ̸≡ 0 (mod r). Then there is a

bijection ϕ from Qr,k(n) to Qr,k+1(n).

Proof. We proceed to construct a map ϕ from Qr,k(n) to Qr,k+1(n) with the help

of the above bijection ∆. Assume that n− k ̸≡ 0 (mod r) and k ≥ 1. Given
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σ ∈ Qr,k(n), let σ̃ = σ −C1, where C1 is the first cycle in σ , that is, σ̃ is the

permutation obtained from σ by removing the cycle containing 1. Since |σ̃ | =
n− k ̸≡ 0 (mod r) and σ̃ is an r-regular permutation, applying the map of ∆, we

get ∆(σ̃) = (x, π̃). Now, let D denote the cycle obtained from C1 with x attached

at the end. Set ϕ(σ) = D π̃ , which is clearly in Qr,k+1(n).

Conversely, let us construct a map α from Qr,k+1(n) to Qr,k(n). Given π ∈
Qr,k+1(n), where n− k ̸≡ 0 (mod r) and k ≥ 1, let C1 be the first cycle of π , and

let D be the cycle obtained from C1 by removing its last entry x. Define π̃ = π−C1.

Note that |π̃|+1 = n−k ̸≡ 0 (mod r) and π̃ is an r-regular permutation. Then set

α(π) = D∆
−1(x, π̃),

which belongs to Qr,k(n).

It is straightforward to verify that the maps ϕ and α are well-defined and both

are inverses to each other. Thus ϕ is a bijection.

Writing n−k = mr+d with 0 < d < r, it is known that, see [1, 4, 6, 8, 12, 17,

21],

|Regr(n− k)|= (n− k)!
(r−1)(2r−1) · · ·(mr−1)

rmm!
,

from which we deduce that∣∣Qr,k(n)
∣∣= ∣∣Qr,k+1(n)

∣∣= (n−1)!
(r−1)(2r−1) · · ·(mr−1)

rmm!
. (2.1)

For k≥ 1, let An,2k−1 denote the set of permutations of [n] with odd cycles for

which the element 1 appears in a cycle of length 2k−1, and let Pn,2k denote the set

of permutations of [n] with odd cycles except that the element 1 is contained in an

even cycle of length 2k. When r = 2, we come to the following correspondence.

Notice that the construction in [9] by way of breaking cycles does not possess this

refined property.

Corollary 2.5. For k ≥ 1, there is a bijection ϕ between A2n,2k−1 and P2n,2k, and

there is a bijection between P2n+1,2k and A2n+1,2k+1.
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For example, when r = 2, given σ = (1 2 3 4 6)(5 10 8)(7)(9) ∈ A10,5, we

have

∆((5 10 8)(7)(9)) = ((5)(7 9 10),8).

Thus

ϕ(σ) = (1 2 3 4 6 8)(5)(7 9 10) ∈ P10,6.

Below are the explicit formulas:

∣∣A2n,2k−1
∣∣= ∣∣P2n,2k

∣∣= (2n−1)!
(2n−2k)!

((2n−2k−1))!!)2 , (2.2)

∣∣P2n+1,2k
∣∣= ∣∣A2n+1,2k+1

∣∣= (2n)!
(2n−2k)!

((2n−2k−1))!!)2 . (2.3)

Exploiting the bijection ϕ , we establish the following incremental transforma-

tion Λ by taking into account the length of the first cycle.

Theorem 2.6. For all r ≥ 2, there is a bijection Λ from Regr(rn) to NReg∗r (rn).

Moreover, if σ ∈ Regr(rn) and the cycle containing 1 in σ has length l = rk+ i,

1≤ i≤ r−1, then Λ(σ) ∈ NReg∗r (rn), where the cycle containing 1 in Λ(σ) has

length rk+ r.

Proof. Let σ in Regr(rn). Assume that its first cycle length is rk + i, where

1≤ i≤ r−1. Since rn ̸≡ rk+ i (mod r), we can apply the bijection ϕ in Lemma

2.4 to σ to get a permutation π . There are two possibilities in regard with the

length of the first cycle of π .

If π is in NRegr(rn), that is, i = r− 1, in this case, we get an enriched per-

mutation in NReg∗r (rn), whose first cycle has color r−1. Set it to be Λ(σ). If π

is still in Regr(rn) with the length of the first cycle increased by 1 in comparison

with σ , that is, the length of the first cycle of π equals rk+ i+1 with rk+ i+1 ̸≡ 0

(mod r). Again, since rn ̸≡ rk+ i+1 (mod r), we may move on to apply the bi-

jection ϕ once more. The procedure goes on until we obtain a permutation π in

NRegr(rn). Finally, we obtain an enriched permutation in NReg∗r (rn) whose first
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cycle has color i. We set it to be Λ(σ). Clearly, it takes r− i steps to reach this

point.

For example, if r = 3, then Λ((3)(5 6)) = (3 6 5)1. It is readily seen that the

process is reversible because the color of the r-singular cycle keeps a record of

the number of times that the map ϕ is applied. Thus Λ is a bijection.

Below is an example for r = 3:

(1 2)(3 4)(5 6)←→ (1 2 4)2 (3)(5 6).

The bijection Φ in Theorem 2.1 can be constructed with the aid of the bijection

Λ from Regr(rn) to NReg∗r (rn). For example, for r = 3, we have

(1 2)(3 4)(5 6)←→ (1 2 4)2 (3 6 5)1.

3 The Bóna-Mclennan-White inequality

In the proof of the following monotone property, there is an inequality that de-

mands a combinatorial explanation. As will be seen, the structure of enriched

cycle permutations is what is needed to serve the purpose. Recall that pr(n) is the

probability for a random permutation of [n] to have an r-th root.

Theorem 3.1 (Bóna, Mclennan and White [8]). For all positive integers n and all

primes r, we have,

pr(n)≥ pr(n+1).

The above assertion is constituted of three circumstances contingent to modulo

conditions on n+1.

Theorem 3.2 (Bóna, Mclennan and White [8]). Let r be a prime. Then we have

the following.

(i) If n+1 ̸≡ 0 (mod r), then pr(n) = pr(n+1).
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(ii) If n+1≡ 0 (mod r) but n+1 ̸≡ 0 (mod r2), then

pr(n)≥
n+1

n
pr(n+1)

with equality holds only when n+1 = kr, where k = 1,2, . . . ,r−1.

(iii) If n+1≡ 0 (mod r2), then pr(n)≥ pr(n+1) with equality holds only when

r = 2 and n = 3.

The proof of the above theorem builds upon a special case of the characteri-

zation of permutations with an r-th root, due to Knopfmacher and Warlimont, see

[21, p. 158]. In particular, when r is prime, a permutation has an r-th root if and

only if for any positive integer i, the number of cycles of length ir is a multiple

of r. Making use of the bijection Ψ as restated in Lemma 2.2, Bóna, McLen-

nan and White gave an entirely combinatorial proof of (i) and (ii). However, in

order to have a fully combinatorial understanding of (iii), one needs a combina-

torial account of the following inequality, see [8, Lemma 3.3], which we call the

Bóna-Mclennan-White inequality, or the BMW inequality, for short.

Lemma 3.3 (Bóna, Mclennan and White [8]). For all r ≥ 2 and m≥ 1,∣∣Cycr2(mr2)
∣∣< ∣∣Regr(mr2)

∣∣ . (3.1)

The BMW-inequality has been proved in [8] by means of generating functions.

In fact, we observe that a stronger version of (3.1) holds, which can be deduced

from the following known formulas, see [1, 4, 6, 8, 12, 17, 21]. For r ≥ 2 and

m≥ 1,

|Cycr(rm)|= (rm)!
(1+ r)(1+2r) · · ·(1+(m−1)r)

rmm!
, (3.2)

|Regr(rm)|= (rm)!
(r−1)(2r−1) · · ·(mr−1)

rmm!
. (3.3)

On the other hand, it is transparent from a combinatorial point of view.

Theorem 3.4. For r ≥ 2 and n≥ 1,

|Cycr(n)| ≤ |Regr(n)| , (3.4)

where the equality holds only when r = 2 and n is even.

11



Proof. When n ̸≡ 0 (mod r), we have |Cycr(n)| = 0, nothing needs to be done.

When n = rm, by restricting the colors of r-singular cycles to only one color, we

see that

|Cycr(rm)| ≤ |Cyc∗r (rm)| . (3.5)

But Theorem 2.1 says that |Regr(rm)| = |Cyc∗r (rm)|, and so (3.4) follows. The

equality holds only when r = 2 and n is even. This completes the proof.

To see that the BMW inequality (3.1) stems from (3.4), just observe that for

r ≥ 2,

Cycr2(mr2)⊂ Cycr(mr2).

This inequality together with the combinatorial reasoning in [8] gives rise to the

conclusion that pr(n)> pr(n+1) for any prime r ≥ 3 and n+1≡ 0 (mod r2).

Consider the case r = 2. As defined before, |Regr(0)|= 1 and |Cycr(0)|= 1.

Once the Lemma 2.2 is established, it is easy to get the following recurrence of

|Regr(rm)|. For details, one can refer to Lemma 2.1 and Lemma 2.6 in [8].

Lemma 3.5. For all r ≥ 2 and m≥ 1, we have

|Regr(rm)|= (rm−1)(rm−1)r−1 |Regr(rm− r)| , (3.6)

where (x)m stands for the lower factorial x(x−1) · · ·(x−m+1).

The above relation can also be deduced inductively by using the recursive

generation of permutations in the cycle notation, see, for example, [1, 13, 18]. In

[1], it has been shown that

|Regr(rm)|= ∑
1≤l≤r−1

(rm−1)l−1 |Regr(rm− l)|

+(rm−1)r |Regr(rm− r)| ,

and by an easy induction on n, it can be shown that

|Regr(rm− l)|= (rm− l)r−l |Regr(rm− r)| , 1≤ l ≤ r−1.

This proves (3.6).

Similarly, the following recurrence relation for Cycr(rm) holds. We can prove

this also using the recursive generation of permutations in the cycle notation.
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Lemma 3.6. For all r ≥ 2 and m≥ 1, we have

|Cycr(rm)|= (rm−1)r−1(rm− r+1) |Cycr(rm− r)| . (3.7)

Proof. Let σ be a permutation in Cycr(rm). Let l be the length of the first cycle

of σ . If l = r, then there are (rm−1)r−1 choices to form the first cycle. If the first

cycle contains more than r elements, say (1 · · · jr jr+1 · · ·), then there are (rm−
1)r |Cycr(rm− r)| choices. We can break the first cycle into two segments 1 · · · jr
and jr+1 · · · . The second segment can be viewed as a cycle with a distinguished

element jr+1. Combining this cycle with a distinguished element and other cycles,

we see a permutation in Cycr(rm− r) with a distinguished element. There are

(rm− 1)r−1 for the first segment 1 · · · jr and there are there are rm− r choices

for the distinguished element jr+1. Hence

|Cycr(rm)|= (rm−1)r−1 |Cycr(rm− r)|

+(rm−1)r−1(rm− r) |Cycr(rm− r)| ,

which gives (3.7).

As per the recurrence relations (3.6) and (3.7), one can derive the formulas

for |Regr(rm)| and |Cycr(rm)|, which lead to the stronger version of the BMW

inequality, i.e., (3.4). Thus, for a prime r ≥ 3, we obtain another combinatorial

explanation of the monotone property. The case r = 2 requires a special treatment.

Lemma 3.7. For m≥ 4, we have

2 |Cyc4(4m)|< |Reg2(4m)| . (3.8)

Proof. For m≥ 1, applying Lemmas 3.5 and 3.6, we obtain that

|Reg2(4m)|= (4m−1)2 (4m−3)2 |Reg2(4m−4)| , (3.9)

|Cyc4(4m)|= (4m−1)(4m−2)(4m−3)2 |Cyc4(4m−4)| . (3.10)

In fact, the proofs of Lemmas 3.5 and 3.6 reveal that there is a bijection from

Reg2(4m) to [4m− 1]2× [4m− 3]2×Reg2(4m− 4), and there is also a bijection
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from Cyc4(4m) to [4m− 1]× [4m− 2]× [4m− 3]2×Cyc4(4m− 4). Clearly, the

coefficient in (3.9) is greater than that in (3.10), and it is just a matter of formality

to make this comparison in combinatorial terms. Consequently, if

2 |Cyc4(4m)|< |Reg2(4m)|

holds for some value m0, then it holds for all m≥ m0. It is easily verified that we

can choose m0 = 4.

Owing to the relation (3.8), the proof in [8] for r = 2 can be recast in combi-

natorial terms. More precisely, it can be shown that we have p2(n+ 1) < p2(n)

whenever n+1≡ 0 (mod 4), with the only exceptions for n = 3,7,11. For these

three special cases, we can look up the data given in [8] or the sequence A247005

in OEIS [19]. By inspection, the values of p2(n) for n = 3,4,7,8,11,12 are given

as follows

1
2
,

1
2
,

3
8
,

17
48

,
29
96

,
209
720

.

Thus for n = 3,7,11, the inequality p2(n+ 1) ≤ p2(n) is valid with equality at-

tained only when n = 3. Therefore, for all primes r ≥ 2, a combinatorial analysis

is accomplished, assuming that the use of data for special cases is allowed. At any

rate, the bottom line is that generating functions play no role here.

4 The monotone property for prime powers

Prompted by numerical evidence, we find that the monotone property remains

valid for prime powers. Below is the table of pr(n) for r = 4,8,9 and 1≤ n≤ 12.

Theorem 4.1. For all positive integers n and all r = ql , where q is a prime and

l ≥ 1, we have pr(n)≥ pr(n+1).

Like the case for primes, the monotone property stands on the following cases

subject to modulo conditions on n+ 1. First, we recall an equality of Chernoff

[10].
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r
n 1 2 3 4 5 6 7 8 9 10 11 12

4 1
1
2

1
2

3
8

3
8

5
16

5
16

53
192

53
192

95
384

95
384

29
128

8 1
1
2

1
2

3
8

3
8

5
16

5
16

35
128

35
128

63
256

63
256

231
1024

9 1 1
2
3

2
3

2
3

5
9

5
9

5
9

40
81

40
81

40
81

110
243

Table 2: Values for pr(n).

Theorem 4.2 (Chernoff). Let q be a prime and r = ql , l ≥ 1, if n+1 ̸≡ 0 (mod q),

then pr(n) = pr(n+1).

For the remaining cases, we obtain the following.

Theorem 4.3. Let q be a prime, r = ql and l ≥ 1.

(i) If n+1≡ 0 (mod q) but n+1 ̸≡ 0 (mod qr), then

pr(n)≥
n+1

n
pr(n+1), (4.1)

with equality holds only when n+1 = kq, where k = 1,2, . . . ,r−1.

(ii) If n+1≡ 0 (mod qr), then pr(n)≥ pr(n+1) with equality holds only when

r = 2 and n = 3.

To prove the above theorem, it is necessary to employ some auxiliary inequal-

ities. Even though these estimates can be considerably improved, we will be con-

tent with coarse lower bounds in order to keep the proofs brief. First, let us recall

a characterization of permutations of [n] with an r-th root, for a prime power r.

In full generality, a criterion was given by Knopfmacher and Warlimont, see Wilf

[21, p. 158].

Definition 4.4. Let ρ be a partition, and let q,r be positive integers. We say that

ρ is q-divisible if all its parts are divisible by q, and we say that (q,r)-divisible,

15



denoted (q,r) | ρ , if it is q-divisible, and for any i, the number of occurrences of

the part iq is a multiple of r. We assume that (q,r) | /0, where /0 denote the empty

partition.

For a permutation σ of [n], we may partition the set of its cycles into two

kinds. Use Rq(σ) to denote the corresponding permutation consisting of its q-

regular cycles and Sq(σ) to denote the permutation consisting of its q-singular

cycles, in lieu of σ(∼q) and σ(q) as used in [8]. We say that a permutation σ is of

q-singular cycle type ρ if Sq(σ) is of type ρ . Let Sρ,q(n), in place of DIVρ,q(n)

as used in [8], denote the set of permutations of [n] with q-singular cycle type ρ .

For example, given q = 2 and r = 2, (1 2)(3 4)(5 9 7 8)(6 10 11 13)(12) is of

2-singular type (42,22), and its 2-singular type is (2,2)-divisible. For the special

case ρ = /0, Sρ,q(n) becomes the set of permutations of [n] with q-regular cycles,

i.e., Regq(n).

Proposition 4.5 (Knopfmacher and Warlimont). If r = ql with q being a prime

number and l ≥ 1, then a permutation has an r-th root if and only if its q-singular

cycle type is (q,r)-divisible.

We take up the common notation

Sr
n = {σ r | σ ∈ Sn}

for the set of permutations of [n] with an r-th root. In connection with regular

permutations, the above characterization implies that for a prime power r = ql

with q prime and l ≥ 1, and n≥ 1,

Regq(n)⊆ Sr
n. (4.2)

Given any q ≥ 2, not necessarily a prime, let r = ql , l ≥ 1, and let Cycq,r(n)

denote the set of permutations of [n] such that each cycle length is a multiple of q

and each cycle length occurs a multiple of r times. In other words, Cycq,r(n) is the

set of permutations of [n] whose cycle type is (q,r)-divisible. The following rela-

tion is parallel to Lemma 3.2 in [8]. The construction in the proof is reminiscent

of the argument in the proof of Lemma 3.6.
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Lemma 4.6. For any m≥ 1, let r = ql , where q≥ 2 and l ≥ 1, we have∣∣Cycqr(mqr)
∣∣∣∣Cycq,r(mqr)
∣∣ ≥ (mq)r−1. (4.3)

Proof. Let π ∈ Cycq,r(mqr). By definition, we assume that π contains kir cycles

of length iq, where ki ≥ 0. For each i with ki ̸= 0, partition the cycles of length iq

into ki classes with each class containing r cycles. For each class F of r cycles of

length iq, we proceed to construct a cycle of length iqr out of the elements in F .

Running over all such classes F , we obtain permutations in Cycqr(mqr).

First, let A1,A2, . . . ,Ar be the cycles in F , where every cycle has length iq, that

is, arrange the cycles in F in any specific linear order. To form a cycle of length

iqr, we represent A1 with the minimum element at the beginning. Then break the

cycles A2,A2, . . . ,Ar into linear orders by starting with any element. There are iq

ways to break a cycle of length iq into a linear order. Assume that A′2,A
′
3, . . . ,A

′
r

are in linear orders by breaking the cycles A2,A3, . . . ,Ar, respectively. Now we can

form a cycle of length iqr by adjoining A′2,A
′
3, . . . ,A

′
r successively at the end of

A1. Evidently, the cycles formed in this way are all distinct, and there are (iq)r−1

of them that can be generated in this manner.

Taking into account all classes F , we then produce certain permutations in

Cycqr(mqr). The number of permutations one can generate this way equals ∏i(iq)(r−1)ki .

Moreover, the range of i in ∏i(iq)(r−1)ki can be restricted to those such that ki ≥ 1.

Given that q≥ 2, for any ki ≥ 1, we have (iq)ki ≥ iqki and

∏
i

iqki ≥∑
i

iqki.

Thus we see that

∏
i
(iq)(r−1)ki ≥

(
∑

i
iqki

)r−1

= (mq)r−1,

where we have used the relation

∑
i

iqki = mq,
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because

∑
i

iqkir = mqr.

This completes the proof.

The following lemma is analogous to Lemma 3.3 in [8].

Lemma 4.7. Let r = ql , where q≥ 2 and l ≥ 1. For any m≥ 1, we have∣∣Regq(mqr)
∣∣∣∣Cycq,r(mqr)
∣∣ > (mq)r−1. (4.4)

Proof. By definition, we have

Cycqr(mqr)⊂ Cycq(mqr),

and hence
∣∣Cycqr(mqr)

∣∣ < ∣∣Cycq(mqr)
∣∣. In light of the stronger version of the

BMW inequality (3.4), we see that∣∣Regq(mqr)
∣∣∣∣Cycqr(mqr)
∣∣ =

∣∣Regq(mqr)
∣∣∣∣Cycq(mqr)
∣∣ ·
∣∣Cycq(mqr)

∣∣∣∣Cycqr(mqr)
∣∣ > 1. (4.5)

Comparing with (4.3) shows that∣∣Regq(mqr)
∣∣∣∣Cycq,r(mqr)
∣∣ =

∣∣Cycqr(mqr)
∣∣∣∣Cycq,r(mqr)
∣∣ ·
∣∣Regq(mqr)

∣∣∣∣Cycqr(mqr)
∣∣ > (mq)r−1,

as required.

The following lower bound of
∣∣Sr

mqr
∣∣ will be used in the proof of Theorem 4.3.

Lemma 4.8. Let r = ql with q = 2 and l ≥ 2, or with any prime q≥ 3 and l ≥ 1,

we have for m≥ 1, ∣∣Sr
mqr
∣∣> mqr

∣∣Cycq,r(mqr)
∣∣ . (4.6)

Proof. For the conditions stated in the lemma, we obtain

r−1 = ql−1≥ l +1,

thus, (mq)r−1 ≥ mql+1. Thanks to (4.4), we find that∣∣Regq(mqr)
∣∣∣∣Cycq,r(mqr)
∣∣ > (mq)r−1 ≥ mql+1 = mqr.
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By (4.2), that is, Regq(mqr)⊆ Sr
mqr, we get∣∣Sr

mqr
∣∣≥ ∣∣Regq(mqr)

∣∣> mqr
∣∣Cycq,r(mqr)

∣∣ ,
as claimed.

Recall that Sr
n denote the set of permutations of [n] with an r-th root. The proof

of Theorem 4.3 also relies on Corollary 2.16 in [8], which reads as follows, where

for a partition ρ , we write |ρ| for the sum of parts of ρ .

Proposition 4.9 (Bóna, Mclennan and White [8]). Let q≥ 2, n≥ 1, and let ρ be

a q-divisible partition such that |ρ| ≤ n. If n+1 is a multiple of q, then∣∣Sρ,q(n)
∣∣≥ 1

n

∣∣Sρ,q(n+1)
∣∣ ,

where equality is attained if and only if ρ = /0.

In the case ρ = /0, the equality says that if n+1 is a multiple of q, then

n
∣∣Regq(n)

∣∣= ∣∣Regq(n+1)
∣∣ ,

which is a consequence of the bijection from Regq(n)× [n] to Regq(n+ 1) due

to Bóna, Mclennan and White, see Lemma 2.6 in [8]. It is easily seen that for

n ≥ 1 and q ≥ 2, if a permutation σ of [n] is of q-singular cycle type ρ , then the

permutation σ ′ of [n+ 1] by adjoining the singleton cycle (n+ 1) to σ is also of

q-singular cycle type ρ .

We are now ready to prove Theorem 4.3.

Proof of Theorem 4.3. Given that r is a prime power ql , by Proposition 4.5, we

see that a permutation of [n] is in Sr
n if and only if its q-singular cycle type is

(q,r)-divisible. So we can write

Sr
n =

⋃
|ρ|≤n,
(q,r) |ρ

Sρ,q(n).

Hence

|Sr
n|= ∑

|ρ|≤n,
(q,r) |ρ

∣∣Sρ,q(n)
∣∣ . (4.7)
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Again, by Proposition 4.5, a permutation of [n+ 1] is in Sr
n+1 if and only if its

q-singular cycle type is (q,r)-divisible, namely,

Sr
n+1 =

⋃
|ρ|≤n+1,
(q,r) |ρ

Sρ,q(n+1).

Considering the range of ρ , we get∣∣Sr
n+1
∣∣= ∑

|ρ|≤n,
(q,r) |ρ

∣∣Sρ,q(n+1)
∣∣+ ∑
|ρ|=n+1,
(q,r) |ρ

∣∣Sρ,q(n+1)
∣∣ . (4.8)

Concerning the terms in (4.7) and in the first sum in (4.8), given any partition ρ

with |ρ| ≤ n and (q,r) | ρ , Proposition 4.9 asserts that if n+1 is a multiple of q,

then ∣∣Sρ,q(n)
∣∣≥ 1

n

∣∣Sρ,q(n+1)
∣∣ , (4.9)

where equality is attained if and only if ρ = /0. Therefore,

|Sr
n|= ∑

|ρ|≤n,
(q,r) |ρ

∣∣Sρ,q(n)
∣∣

≥ 1
n ∑
|ρ|≤n,
(q,r) |ρ

∣∣Sρ,q(n+1)
∣∣

=
1
n

(∣∣Sr
n+1
∣∣− ∑
|ρ|=n+1,
(q,r) |ρ

∣∣Sρ,q(n+1)
∣∣).

Consequently,

n |Sr
n| ≥

∣∣Sr
n+1
∣∣− ∑
|ρ|=n+1,
(q,r) |ρ

∣∣Sρ,q(n+1)
∣∣ . (4.10)

We now proceed to prove (i). Assume that n+ 1 is a multiple of q but not a

multiple of qr. We claim that for a partition ρ with |ρ|= n+1 and (q,r) | ρ ,

Sρ,q(n+1) = /0. (4.11)
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Suppose to the contrary that there exists a permutation in Sρ,q(n+1). Under the

condition that ρ is (q,r)-divisible, we have |ρ| is a multiple of qr, but we also

have |ρ|= n+1, which contradicts the condition that n+1 is not a multiple of qr.

Utilizing the property (4.11) and the relation (4.10), we get

n |Sr
n| ≥

∣∣Sr
n+1
∣∣ ,

which is equivalent to (4.1). This proves (i).

To prove (ii), assume that n+1 = mqr. We shall proceed in the same fashion

as the argument given in [8] when r is a prime. The case r = 2 has been taken care

of in the preceding section. So we may set our mind on the case when r is a prime

power greater than 2.

In the notation (q,r) | ρ , we can write

Cycq,r(mqr) =
⋃

|ρ|=mqr
(q,r) |ρ

Sρ,q(mqr). (4.12)

Substituting (4.12) into (4.10), we obtain

(mqr−1)
∣∣Sr

mqr−1
∣∣≥ ∣∣Sr

mqr
∣∣− ∣∣Cycq,r(mqr)

∣∣ . (4.13)

Expressing (4.6) as

1
mqr

∣∣Sr
mqr
∣∣> ∣∣Cycq,r(mqr)

∣∣ ,
and invoking (4.13), we obtain that

(mqr−1)
∣∣Sr

mqr−1
∣∣> (1− 1

mqr

)∣∣Sr
mqr
∣∣ .

It follows that

mqr
∣∣Sr

mqr−1
∣∣> ∣∣Sr

mqr
∣∣ .

Thus we conclude that pr(n)> pr(n+1) when n+1≡ 0 (mod qr). This proves

(ii).
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The conditions under which the equalities are attained in (i) and (ii) can be

easily discerned. This completes the proof.
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