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Abstract

We came across an unexpected connection between a remarkable grammar of Du-

mont for the joint distribution of (exc,fix) over Sn and a beautiful theorem of Diaconis-

Evans-Graham on successions and fixed points of permutations. With the grammar in

hand, we demonstrate the advantage of the grammatical calculus in deriving the gen-

erating functions, where the constant property plays a substantial role. On the grounds

of left successions of a permutation, we present a grammatical treatment of the joint

distribution investigated by Roselle. Moreover, we obtain a left succession analogue

of the Diaconis-Evans-Graham theorem, exemplifying the idea of a grammar assisted

bijection. The grammatical labelings give rise to an equidistribution of (jump,des) and

(exc,drop) restricted to the set of left successions and the set of fixed points, where jump

is defined to be the number of ascents minus the number of left successions.

Keywords: Context-free grammars, increasing binary trees, the Diaconis-Evans-Graham

theorem, successions, fixed points.
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1 Introduction

This paper is concerned with a beautiful theorem of Diaconis-Evans-Graham [5] on the cor-

respondence between successions and fixed points of permutations. Unlike a typical equidis-
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tribution property, an attractive feature of this theorem is that the bijection can be restricted

to permutations with a specific set of successions and permutations with the same set of fixed

points.

The topic of the enumeration of successions of permutations has a rich history. Dumont

referred to the work of Roselle [9] on the joint distribution of the number of ascents and

the number of successions. In fact, the grammar proposed by Dumont [6] is meant to deal

with the joint distribution of the number of excedances, the number of drops and the number

of fixed points of a permutation. His argument may be paraphrased in the language of a

grammatical labeling of complete increasing binary trees. We will show that this grammar is

related to the Diaconis-Evans-Graham theorem, even though it does not look so at first sight.

It is worth mentioning that Dumont’s citation to Roselle was not accurate; nevertheless, such

an incident was somehow just to the point. Indeed, this work would not have come into being

without the lucky pointer of Dumont.

First, we come to the realization that the grammar of Dumont can be adapted to a prob-

lem of Roselle. We just need to be more circumspect when it comes to the notion of a left

succession, analogous to that of a left peak of a permutation. In the approach of Roselle, the

consideration of a left succession at position 1 was considered informative for the computa-

tion of the generating function of interior successions. As for a left succession, one assumes

that a zero is patched at the beginning of a permutation. In contrast to a left succession, a

usual succession is called an interior succession.

Once the grammar is in place, a grammatical labeling is necessary in order to record a

weighted counting of a combinatorial structure. A labeling scheme also makes it possible

to carry out the grammatical calculus. We will show how the grammar of Dumont works

for the joint distribution of (exc,fix). Furthermore, we give a different labeling scheme for

permutations which shows that the same grammar of Dumont suits equally well for the joint

distribution of (jump, lsuc), where jump and lsuc denote the number of jumps and the number

of left successions of a permutation, respectively. It is no surprise that the constant property

plays a substantial role in the grammatical calculus.

While the grammar is instrumental in establishing an equidistribution, it is not clear

whether one can take a step forward in obtaining a Diaconis-Evans-Graham type theorem

concerning a given set of left successions and the same set fixed points. Fortunately, the

answer is yes. In fact, it is exactly where the idea of a grammar assisted bijection comes on

the scene.
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2 A grammar of Dumont

In this section, we recall a remarkable grammar of Dumont [6] for the joint distribution of the

statistics (exc,drop,fix) over Sn, the set of permutations of [n] = {1,2, . . . ,n}, where n ≥ 1.

For a permutation σ = σ1 · · ·σn ∈ Sn, an index 1≤ i≤ n is called an excedance if σi > i, or

a drop if σi < i, or a fixed point if σi = i. Clearly, n cannot be an excedance and 1 cannot be

a drop. The number of excedances, the number of drops and the number of fixed points of

σ are denoted by exc(σ), drop(σ) and fix(σ), respectively. A drop of a permutation is also

called an anti-excedance.

The joint distribution of (exc,fix) was determined by Foata-Schützenberger [7], see also

Shin-Zeng [10]. For n≥ 1, define

Fn(x,z) = ∑
σ∈Sn

xexc(σ)zfix(σ)

and define F0(x,z) = 1. Then

∞

∑
n=0

Fn(x,z)
tn

n!
=

(1− x)ezt

ext− xet . (2.1)

Writing

Fn(x,y,z) = ∑
σ∈Sn

xexc(σ)ydrop(σ)zfix(σ)

and F0(x,y,z) = 1, (2.1) can be converted into the homogeneous form

∞

∑
n=0

Fn(x,y,z)
tn

n!
=

(y− x)ezt

yext− xeyt . (2.2)

Below are the first few values of Fn(x,y,z):

F0(x,y,z) = 1,

F1(x,y,z) = z,

F2(x,y,z) = xy+ z2,

F3(x,y,z) = 3xyz+ xy2 + x2y+ z3,

F4(x,y,z) = 6xyz2 +4xy2z+ xy3 +4x2yz+7x2y2 + x3y+ z4.

The grammar of Dumont reads

G = {a→ az, z→ xy, x→ xy, y→ xy}. (2.3)
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Let D be the formal derivative with respect to G, which can be expressed as a differential

operator

az
∂

∂a
+ xy

∂

∂ z
+ xy

∂

∂x
+ xy

∂

∂y
.

Dumont [6] showed that the polynomials Fn(x,y,z) can be generated by D.

Theorem 2.1 (Dumont). The following relation is valid for n≥ 0,

Dn(a) = aFn(x,y,z). (2.4)

Dumont’s argument can be understood as a description of the procedure of recursively

generating permutations in the cycle notation. Recall that a cycle is written in such a way

that the minimum element is at the beginning and the cycles of a permutation are arranged in

the increasing order of the minimum elements. Here we give an explanation in the language

of a grammatical labeling, which we call the (a,x,y,z)-labeling, both for permutations and

for increasing binary trees.

Given a permutation σ of [n], represent it in the cycle notation. Use a to signify the

position where a new cycle may be formed. If i is in a 1-cycle, we label it by z. If (i, j) is an

arc in the cycle notation, that is, σi = j, we label it by x if i < j, that is, i is an excedance, or

by y if i > j, that is, i is a drop. Then an insertion of n+1 into σ can be formally described

with the aid of the grammar rules.

For example, below is a permutation in the cycle notation, where the labels are placed

after each element and the label a is placed at the end:

(1x8y4x9y6y) (2z) (3x5y) (7z) a. (2.5)

Relying on the grammar, one can build a complete increasing binary tree to record the

insertion process of generating a permutation of [n+ 1] from a permutation of [n], in the

cycle notation, to be precise. To describe the procedure, we represent a cycle by arranging

the minimum element at the beginning followed by a permutation of the remaining elements.

Clearly, this permutation following the minimum element corresponds to a complete increas-

ing binary tree, see, for example, Stanley [11, P. 23].

Now, we may represent a cycle by a planted complete increasing binary tree. First, des-

ignate the minimum element as the root. If the cycle contains only one element, then assign

it a z-leaf. Otherwise, attach the complete increasing binary tree corresponding to the per-

mutation following the minimum element as a subtree of the root. Note that the external

leaves of the complete increasing binary tree comply with the (x,y)-labeling for the Eulerian
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polynomials, namely, a left leaf is labeled by x and a right leaf is labeled by y. For exam-

ple, the cycles of the permutation in (2.5) are represented by the forest of planted complete

increasing binary trees in Figure 1.

1

4

8

x y

6

9

x y

y

2

z

3

5

x y

7

z

Figure 1: A forest of planted increasing binary trees.

As the last step, we can put together these planted increasing binary trees by drawing an

edge between two roots next to each other to form a complete increasing binary tree with the

(a,x,y,z)-labeling for which the root is 1 and the rightmost leaf is labeled by a.

For example, the forest in Figure 1 can be put together into a complete increasing binary

tree with an (a,x,y,z)-labeling in Figure 2.

We observe the following properties.

• A z-leaf corresponds to a fixed point.

• An x-leaf corresponds to an excedance.

• A y-leaf corresponds to a drop.

1

4

8 6

9

2

z 3

5 7

a

x y y

x y x y z a

Figure 2: The (a,x,y,z)-labeling for (exc,drop,fix).
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To recover a permutation σ from a complete increasing binary tree T , we may decompose

T into a forest of planted increasing binary trees by removing the edges from the root to the

a-leaf and deleting the a-leaf.

The goal of this section is to show that the generating function of Fn(x,y,z) can be easily

derived by the grammatical calculus. A grammatical derivation of the generating function of

the Eulerian polynomials An(x,y) was given in [4]. The same reasoning can be carried over

to the computation of the generating function of Fn(x,y,z). Bear in mind that the generating

function with respect to the formal derivative D is defined by

Gen(w, t) =
∞

∑
n=0

Dn(w)
tn

n!
,

where w is a Laurent polynomial in the variables a,x,y,z. Note that the generating function

with respect to D permits the multiplicative property, which is equivalent to the Leibniz rule,

see [4] and references therein.

Theorem 2.2. We have

Gen(a, t) =
a(y− x)ezt

yext− xeyt . (2.6)

Proof. In virtue of the rules

x→ xy, y→ xy,

we obtain the generating function

Gen(x, t) =
x− y

1− yx−1e(x−y)t
,

see [4]. Since D(z− y) = xy− xy = 0, i.e., z− y is a constant relative to D, we deduce that

Dn(ax−1) = Dn−1 (ax−1(z− y)
)
= ax−1(z− y)n,

and hence

Gen(ax−1, t) =
∞

∑
n=0

Dn(ax−1)
tn

n!
= ax−1e(z−y)t . (2.7)

By the Leibniz rule or the product rule, we infer that

Gen(a, t) = Gen(x ·ax−1, t) = Gen(x, t)Gen(ax−1, t) =
a(y− x)ezt

yext− xeyt ,

as required.

Putting a= 1, we arrive at Equation (2.2). Furthermore, setting z= 0 yields the generating

function of the derangement polynomials; see Brenti [1].
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3 The joint distribution of Roselle

In this section, we give an account of the generating function of Roselle [9] for the joint

distribution of the number of ascents and the number of successions over Sn in a nutshell.

Starting with recurrence relations, Roselle employed the symbolic method to accomplish

the task of computation. Such an antiquate mechanism is rarely in demand these days, but

perhaps it should not be completely forgotten, even though it seems obscure or dubious and

even if its extinction may be inevitable.

3.1 The formulas of Roselle

Let us recall some definitions. Let n ≥ 1, and let σ be a permutation of [n]. We assume

that σ0 = 0. An ascent or a rise of σ is an index 0 ≤ i ≤ n− 1 such that σi < σi+1. The

number of ascents of σ is denoted by asc(σ). An index i (1≤ i≤ n−1) is called a descent

of σ if σi > σi+1. In this definition, the index n is not counted as a descent. The number of

descents of σ is denoted by des(σ). An index i (1 ≤ i ≤ n−1) of σ is called a succession,

or an interior succession, if σi +1 = σi+1. We call an index i (1≤ i≤ n) a left succession if

σi−1 +1 = σi. Mind the subtlety with respect to the range of indices for a left succession.

In order to single out ascents that are not left successions, we say that an index 1≤ i≤ n

of σ is a jump if i− 1 is an ascent but i is not a left succession, that is, σi ≥ σi−1 + 2. The

number of jumps of σ is denoted by jump(σ).

For 2≤ i≤ n, if i is a jump, then i−1 is called a big ascent by Ma-Qi-Yeh-Yeh [8], and

the number of big ascents of σ is denoted by basc(σ). However, if 1 is a jump, it does not

contribute to the counting of big ascents.

Let P(n,r,s) denote the number of permutations of [n] with r ascents and s (interior)

successions. For example, P(3,2,0) = 2. The two permutations of {1,2,3} with two ascents

and no successions are 132, 213. Nevertheless, 132 has a left succession. While the term

of a left succession is not manifestly put to use, one can find a clue through the generating

function for the number of permutations of [n] with r ascents and no left successions, see

Roselle [9].

As to left successions, for n ≥ 1, let P∗(n,r,s) denote the number of permutations of [n]

with r ascents and s left successions. Define P∗0 (x,z) = 1 and define for n≥ 1,

P∗n (x,z) =
n

∑
r=1

r

∑
s=0

P∗(n,r,s)xr−szs.

7



Since for n≥ 1 and for any permutation σ ∈ Sn.

asc(σ) = jump(σ)+ lsuc(σ),

we see that

P∗n (x,z) = ∑
σ∈Sn

xjump(σ)zlsuc(σ).

The first few values of P∗n (x,z) are given below:

P∗0 (x,z) = 1,

P∗1 (x,z) = z,

P∗2 (x,z) = x+ z2,

P∗3 (x,z) = x+ x2 +3xz+ z3,

P∗4 (x,z) = x+7x2 + x3 +4xz+4x2z+6xz2 + z4.

Below is the generating function of P∗n (x,z).

Theorem 3.1 (Roselle). We have
∞

∑
n=0

P∗n (x,z)
tn

n!
=

(1− x)ezt

ext− xet . (3.1)

Notice that this formula coincides with (2.1) for the joint distribution of (exc,fix). As

will be seen, this is by no means a coincidence. We will encounter the same grammar in

Section 3.2 and so we ought to have the same story.

Let us turn to the main theme of Roselle. Set P0(x,z) = 1, and for n≥ 1 define

Pn(x,z) =
n

∑
r=1

r−1

∑
s=0

P(n,r,s)xrzs, (3.2)

or equivalently,

Pn(x,z) = ∑
σ∈Sn

xasc(σ)zsuc(σ). (3.3)

The first few values of Pn(x,z) are given below:

P0(x,z) = 1,

P1(x,z) = x,

P2(x,z) = x2z+ x,

P3(x,z) = x+2x2 +2x2z+ x3z2,

P4(x,z) = x+8x2 +2x3 +3x2z+6x3z+3x3z2 + x4z3.

As shown by Roselle, the polynomials P∗n (x,z) serve as a stepstone to compute Pn(x,z).
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Theorem 3.2 (Roselle). For n≥ 1, we have

Pn(x,z) = P∗n (x,xz)+ x(1− z)P∗n−1(x,xz). (3.4)

Combining the generating function of P∗n (x,z) and the above relation gives rise to the

generating function of Pn(x,z).

Corollary 3.3. We have
∞

∑
n=0

Pn+1(x,z)
tn

n!
=

x(1− x)2e(xz+1)t

(ext− xet)2 . (3.5)

3.2 A grammatical labeling for left successions

As alluded by the grammar of Dumont, we tend to believe that the notion of a left succession

should be considered as a legitimate object of the subject, but it does not seem to have gained

enough recognition.

For n≥ 1, define

Ln(x,y,z) = ∑
σ∈Sn

x jump(σ)ydes(σ)z lsuc(σ).

For n = 0, set L0(x,y,z) = 1.

The following theorem shows that the polynomials Ln(x,y,z) can be generated by the

grammar G in (2.3) of Dumont, that is,

G = {a→ az, z→ xy, x→ xy, y→ xy}.

Theorem 3.4. Let D be the formal derivative with respect to G. For n≥ 0, we have

Dn(a) = aLn(x,y,z). (3.6)

The above theorem can be justified by a labeling scheme of permutations. Assume that

n ≥ 1 and σ is a permutation of [n]. Consider the position after each element σi for i =

0,1, . . . ,n, with σ0 = 0. First of all, label the position after the maximum element n by a.

Next, if σn 6= n, label the position after σn by y. For the remaining positions, if i is a jump,

then label the position on the left of σi by x; if i is a left succession, then label the position

on the left of σi by z, if i is a descent and σi 6= n, label the position on the right of σi by y.

Below is an example:

0 x 2 x 6 y 3 z 4 y 1 x 5 x 8 z 9 a 7 y. (3.7)

Write ∗ for the element n+1 to be inserted into σ . The change of labels can be described

as follows. Assume that ∗ is to be inserted at the position between σi and σi+1, where

0≤ i≤ n.
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1. If ∗ is inserted at a position a, that is, σi = n, then we get nz ∗ aσi+1 in the neighbor-

hood, this operation is captured by the rule a→ az.

2. If ∗ is inserted at a position x, then we see the update of σ : σi xσi+1→ σi x ∗ aσi+1.

In the meantime, the label a after n in σ , wherever it is, will be switched to y, because

∗ is not inserted after n. This change of labels is reflected by the rule x→ xy.

3. If ∗ is inserted at a position y, since σi 6= n, the update of σ can be described by

σi yσi+1 → σi x ∗ aσi+1. In the meantime, the label a after n in the labeling of σ ,

wherever it is, will be switched to y. This change of labels is governed by the rule

y→ xy.

4. If ∗ is inserted at a position z, then we have the update σi zσi+1→ σi x ∗ aσi+1. In the

meantime, the label a after n in the labeling of σ , wherever it is, will be switched to y.

This change of labels is in compliance with rule z→ xy.

We now have the same grammar for the two occasions. Thus we are furnished with an

equidistribution.

Theorem 3.5. For n≥ 1, the statistics (jump,des, lsuc) and the statistics (exc,drop,fix) are

equidistributed over the set of permutations of [n].

In other words, the above theorem says that for n≥ 0,

Fn(x,y,z) = Ln(x,y,z). (3.8)

In fact, we are going to pursue a stronger version of the above theorem, that is, a left

succession analogue of the Diaconis-Evans-Graham theorem. While a grammar might be

sufficient to guarantee an equidistribution of two sets of statistics, it does not tell us explic-

itly how to form a bijection. Nevertheless, there are occasions that the grammar can be a

guideline for establishing a correspondence even under certain constraints. We will come

back to this point in Section 4.

3.3 Back to interior successions

Returning to the original formulation of the joint distribution of Roselle, let R0(x,y,z) = 1,

and for n≥ 1, let

Rn(x,y,z) = ∑
σ∈Sn

x jump(σ)ydes(σ)zsuc(σ), (3.9)
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which we call the Roselle polynomials. The first few values of Rn(x,y,z) are given below:

R0(x,y,z) = 1,

R1(x,y,z) = 1,

R2(x,y,z) = xy+ z,

R3(x,y,z) = xy+2xyz+ xy2 + x2y+ z2,

R4(x,y,z) = 3xyz+3xyz2 + xy2 +3xy2z+ xy3 +3x2yz+ x2y+7x2y2 + x3y+ z3.

Using the same reasoning for the grammatical labeling for left successions together with

a slight alternation of the grammar, a grammatical calculus can be carried out for the Roselle

polynomials. Suppose that we are working with the grammar for left successions, but we

would like to avoid 1 being counted as a left succession, which is labeled by z. This require-

ment can be easily met by turning to an additional label b as a substitute of the label z. That

is to say, the rule z→ xy should be recast as b→ xy. For example, we should start with

the initial labeling 0b1a instead of 0z1a. As for the original labels a,x,y,z, their roles will

remain unchanged. Thus we meet with the mended grammar:

G = {a→ az, b→ xy, x→ xy, y→ xy, z→ xy}. (3.10)

Let D be the formal derivative of G in (3.10). Then we have

D(ab) = abz+axy,

which is the sum of weights of the two permutations

0 b 1 z 2 a, 0 x 2 a 1 y.

In general, the polynomials Rn(x,y,z) can also be generated by the formal derivative D.

Theorem 3.6. For n≥ 1, we have

Rn(x,y,z) = Dn−1(ab)|a=1,b=1. (3.11)

The grammatical calculus shows that the generating function for the Roselle polynomials

is essentially a product of the generating function of Ln(x,y,z) and the generating function

of the bivariate Eulerian polynomials.

Theorem 3.7. We have

Gen(ab, t) =
a(y− x)ezt

yext− xeyt

(
x− y

1− yx−1e(x−y)t
− x+b

)
. (3.12)
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Proof. By the Leibniz rule, we get

Gen(ab, t) =
∞

∑
n=0

Dn(ab)
tn

n!
= Gen(a, t)Gen(b, t).

Since D(b) = D(x) = xy, it follows that

Gen(b, t) = Gen(x, t)− x+b =
x− y

1− yx−1e(x−y)t
− x+b,

which, together with Theorem 2.2, implies (3.12).

Next we show that the generating function of Pn(x,z) can be derived by using the gram-

matical calculus. Making substitutions in Theorem 3.6 gives the following relation.

Corollary 3.8. For n≥ 1, we have

Pn(x,z) = Dn−1(ab)|a=1,y=1,b=x,z=xz . (3.13)

Proof. Note that for any permutation σ of [n], we have for n≥ 1,

1+ jump(σ)+ suc(σ) = asc(σ). (3.14)

By Theorem 3.6, we find that

Dn−1(ab)|a=1,y=1,b=x,z=xz = x ∑
σ∈Sn

x jump(σ)(xz)suc(σ)

= ∑
σ∈Sn

xasc(σ)zsuc(σ),

as required.

The above relation enables us to deduce the generating function of Pn(x,z) from that of

Rn(x,y,z), that is,

∞

∑
n=0

Pn+1(x,z)
tn

n!
= Gen(ab, t)|a=1,y=1,b=x,z=xz =

x(1− x)2e(xz+1)t

(ext− xet)2 ,

which is in accordance with (3.5).

We finish this section with a relation between Rn(x,y,z) and Ln(x,y,z), which can be

readily verified by the grammatical calculus.

Theorem 3.9. For n≥ 0, we have

Rn+1(x,y,z) = Ln(x,y,z)+
n

∑
k=1

(
n
k

)
Ak(x,y)Ln−k(x,y,z), (3.15)

where for k ≥ 1, Ak(x,y) are the bivariate Eulerian polynomials.
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This relation also admits a combinatorial interpretation. Let T be a complete increasing

binary tree on [n+ 1]. Suppose that we wish to interpret Rn+1(x,y,z) in terms of complete

increasing binary trees. We may adopt the following labeling for Ln+1(x,y,z), except that

if the root of T has a z-leaf, we should label it by 1 rather than z. If this is the case, then

the right subtree of T can be viewed as a complete increasing tree on [n] with a labeling,

which contributes a term to Ln(x,y,z). If the root of T has a nonempty left subtree, then this

left subtree does not have any z-leaves, which can be reckoned as a labeling for the Eulerian

polynomials, and so we are through.

4 An analogue of the Diaconis-Evans-Graham theorem

The main result of this paper is a left succession analogue of the Diaconis-Evan-Graham

theorem. The grammar of Dumont can be utilized to produce a bijection from permutations

with a given set of left successions to permutations with the same set of fixed points, which

possesses an additional equidistribution property concerning (jump,des) and (exc,drop).

For n≥ 1 and a permutation σ ∈ Sn, define

M(σ) = {i |1≤ i≤ n−1, σi +1 = σi+1},

G(σ) = {i |1≤ i≤ n−1, σi = i},

F(σ) = {i |1≤ i≤ n, σi = i}.

It should be noted that the index n is not taken into consideration in the definition of G(σ).

Given a subset I ⊆ [n− 1], denote by Mn(I) the set of permutations of [n] with I being the

set of (interior) successions, and denote by Gn(I) the set of permutations σ ∈ Sn such that

G(σ) = I. Similarly, Fn(I) denotes the set of permutations σ of [n] such that F(σ) = I.

Theorem 4.1 (Diaconis-Evans-Graham). Let n≥ 1 and I ⊆ [n−1]. Then there is a bijection

between Mn(I) and Gn(I).

For the special case I = /0, a permutation without successions is called a relative derange-

ment. Let Dn denote the number of derangements of [n], and let Qn denote the number of

relative derangements of [n]. Roselle [9] and Brualdi [2] deduced that

Qn = Dn +Dn−1. (4.1)

A bijective proof of this relation was given in [3], appealing to the first fundamental trans-

formation. Taking I = /0, a permutation in Gn(I) may or may not have n as a fixed point.
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The permutations in these two cases are counted by Dn−1 and Dn, respectively. Thus the

I = /0 case of the proof of the Diaconis-Evans-Graham theorem reduces to a combinatorial

interpretation of (4.1).

Here comes the question of what happens for left successions. To fit in the picture of a

grammar assisted bijection, we find it more convenient to work with a variant or a reformu-

lation of the Diaconis-Evans-Graham theorem. Assume that n≥ 1 and σ ∈ Sn. Define

M(σ) = {σi |1≤ i≤ n−1, σi +1 = σi+1}.

It is readily seen that for any σ ∈ Sn,

M(σ−1) = M(σ), (4.2)

G(σ−1) = G(σ), (4.3)

F(σ−1) = F(σ). (4.4)

where σ−1 stands for the inverse of σ .

Similar to the notation M(σ), for n ≥ 1 and a subset I ⊆ [n− 1], we define Mn(I) to be

the set of permutations σ ∈ Sn such that M(σ) = I. Then Theorem 4.1 can be reformulated

as follows.

Theorem 4.2. Let n≥ 1 and I ⊆ [n−1]. There is a bijection between Mn(I) and Gn(I).

As a left succession analogue of M(σ), for n≥ 1 and a permutation σ of [n], we define

L(σ) = {σi |1≤ i≤ n, σi−1 +1 = σi}.

For a subset I of [n], define Ln(I) to be the set of permutations σ of Sn such that L(σ) = I.

Theorem 4.3. For n≥ 1 and any I ⊆ [n], there is a bijection Φ from Ln(I) to Fn(I) that maps

(jump,des) to (exc,drop).

Proof. Given a permutation σ = σ1 · · ·σn ∈ Ln(I), we wish to construct a complete increas-

ing binary T with the (a,x,y,z)-labeling such that σi ∈ L(σ) if and only if the vertex σi has

a z-leaf in T . Once the correspondence is established, the equidistribution property can be

deduced from the interpretations of the labelings.

The map can be described as a recursive procedure. For n = 1, the permutation z1a is

mapped to the complete increasing tree having one internal vertex 1 with a left z-leaf and a

right a-leaf.
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We now assume that n ≥ 1 and that σ = σ1σ2 · · ·σn is a permutation of [n]. As the

induction hypothesis, we assume that T is the tree corresponding to σ . For 1 ≤ i ≤ n, the

position i is referred to the position immediately before σi, whereas the position n+ 1 is

meant to be the position after σn.

To keep the procedure running, we need to maintain additional properties of σ and T .

Besides having the same weight, they should be synchronized in a certain sense. To be more

specific, we say that the labeling of σ is coherent with the labeling of T provided that the

following conditions are satisfied. In fact, these properties can be assured after each update.

• If the position i in σ is labeled by x, then the vertex σi in T has a x-leaf;

• If the position i in σ is labeled by y, then the vertex σi−1 +1 in T has a y-leaf;

• If the position i in σ is labeled by z, then the vertex σi in T has a z-leaf.

Suppose that ∗ = n+1 is to be inserted into σ . It is necessary to find out how to update

the tree T accordingly. Now that there are n+1 (insertion) positions of σ and there are n+1

leaves of T , it suffices to define a map from the set of positions to the set of leaves of T

with the understanding that when ∗ is inserted at position, say i, T will be updated to T ′ by

turning the corresponding leaf of T into an internal vertex ∗. Denote by σ ′ the permutation

produced from σ by inserting ∗ at the position i. There are four cases with regard to the four

rules of the grammar.

1. If ∗ is inserted at a position labeled by a, we add ∗ to T at the position of the a-leaf.

This operation is consistent with the rule a→ az.

2. For a label z at the position i, by the induction hypothesis, we know that the vertex σi

in T has a z-leaf, so we can apply the rule z→ xy to this z-leaf to update T . Notice that

when ∗ is inserted, the label a on the right of n in σ will be switched to y. Observe that

this y-label corresponds to the y-leaf of ∗ in T ′. By inspection, we see that the labeling

of σ ′ is coherent with the labeling of T ′.

3. When the insertion occurs at position i labeled by x, by the induction hypothesis, we

know that the vertex σi in T has a x-leaf. Then we apply the rule x→ xy to this leaf.

Notice that the y-leaf of ∗ in T ′ corresponds to the y-label on the right of n. Again, it

can be seen that the labeling of σ ′ is coherent with the labeling of T ′.

4. For a position i labeled by y, by the induction hypothesis, we know that the vertex

σi−1 +1 in T has a y-leaf. Then we can apply the rule y→ xy to this leaf. In this case,

the labeling of σ ′ remains coherent with the labeling of T ′.
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So far we have provided a procedure to update T depending on where the element ∗ is

inserted into σ . Moreover, every stage of this procedure is reversible. The detailed exam-

ination is omitted. As the grammar ensures that the map is weight-preserving, that is, the

weight of σ equals that of T .

It should be added that a left succession, the element σi for which σi−1 + 1 = σi, to be

precise, is created in σ whenever a vertex σi with a left z-leaf is created in T . Meanwhile, a

left succession σi is destroyed in σ whenever a z-leaf with parent σi is destroyed.

It should also be noted that a jump σi for which σi−1 +2≤ σi is created in σ whenever a

vertex σi with a left x-leaf is created in T . Meanwhile, a jump σi is destroyed in σ whenever

a left x-leaf with parent σi is destroyed.

Since we have employed the cycle notation of a permutation, a vertex σi with a left z-leaf

corresponds to a fixed point of a permutation, and an x-leaf corresponds to an excedance,

that is, an element σi such that σi > i. This completes the proof.

Figure 3 illustrates how to build the corresponding trees step by step, where an underlined

label indicates where an insertion takes place.

For n = 3, the correspondence is given in the table below. The cases when Ln(I) = /0 or

Fn(I) = /0 are not listed, such as I = {1,2}.

I ⊆ [n] Ln(I) Fn(I) (jump,des) of Ln(I)↔ (exc,drop) of Fn(I)

/0
2 1 3 (123) (2,1)

3 2 1 (132) (1,2)

{1} 1 3 2 (1)(23) (1,1)

{2} 3 1 2 (13)(2) (1,1)

{3} 2 3 1 (12)(3) (1,1)

{1,2,3} 1 2 3 (1)(2)(3) (0,0)

To conclude, we remark that the above grammar assisted bijection permits a refined

equidistribution property in terms of set-valued statistics. As shown in [8], a grammar may

be a helpful platform to deal with set-valued statistics. Roughly speaking, the above grammar

assisted bijection maps elements associated with the x-labels in a permutation to elements

associated with the x-labels in a complete increasing binary tree. More precisely, let

Jump(σ) = {σi |1≤ i≤ n, σi−1 +2≤ σi},
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Permutations Trees

z 1 a
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z 1 z 2 a
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z 2
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z 1 x 3 a 2 y
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z 2
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x y
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z 2
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x 4

x y

a

z 1 x 3 y 2 x 4 z 5 a
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x 4

x y

5

z a

z 1 x 6 a 3 y 2 x 4 z 5 y

1

z 2
3

6

x y

4

x y

5

z a

Figure 3: An example.

Exc(σ) = {σi |1≤ i≤ n, σi > i}.

In other words, the set Jump(σ) consists of elements to the right of the x-labels of σ , whereas

the elements in Exc(σ) are exactly the vertices having an x-leaf in a complete increasing

binary tree. Thus for the bijection Φ in the theorem and for any permutation σ of Sn, we
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have

Jump(σ) = Exc(Φ(σ)). (4.5)

For example, let σ = 163245. Then we have Φ(σ) = (1)(2634)(5). It is readily checked

that

L(σ) = F(Φ(σ)) = {1,5}

and

Jump(σ) = Exc(Φ(σ)) = {4,6}.

Similarly, the y-labels are related to the set-valued refinements of des and drop. So our

grammar assisted bijection suits the purpose of producing a set-valued equidistribution.
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Lecture Notes in Math., Vol. 138, Springer-Verlag, Berlin-New York, 1970.

[8] S.-M. Ma, H. Qi, J. Yeh and Y.-N. Yeh, On the joint distributions of succession and

Eulerian statistics, arXiv:2401.01760.

18



[9] D.P. Roselle, Permutations by number of rises and successions, Proc. Amer. Math. Soc.,

19 (1968) 8–16.

[10] H. Shin and J. Zeng, The q-tangent and q-secant numbers via continued fractions, Eu-

ropean J. Combin., 31 (2010) 1689–1705.

[11] R.P. Stanley, Enumerative Combinatorics, Vol. I, second ed., Cambridge Univ. Press,

Cambridge, 2012.

19


	Introduction
	A grammar of Dumont 
	The joint distribution of Roselle
	The formulas of Roselle
	A grammatical labeling for left successions
	Back to interior successions

	An analogue of the Diaconis-Evans-Graham theorem

