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Abstract

The Cayley continuants are referred to the determinants of tridiagonal

matrices in connection with the Sylvester continuants. Munarini-Torri found

a striking combinatorial interpretation of the Cayley continuants in terms of

the joint distribution of the number of odd cycles and the number of even

cycles of permutations of [n] = {1,2, . . . ,n}. In view of a general setting,

r-regular cycles (with length not divisible by r) and r-singular cycles (with

length divisible by r) have been extensively studied largely related to roots

of permutations. We introduce the wide band Cayley continuants as an ex-

tension of the original Cayley continuants, and we show that they can be

interpreted in terms of the joint distribution of the number of r-regular cy-

cles and the number of r-singular cycles over permutations of [n].

Keywords: r-regular cycles, r-singular cycles, roots of permutations, the Cayley

continuants.
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1 Introduction

As a way to compute Sylvester’s continuants, Cayley [4] introduced the tridiago-

nal determinants, as called the Cayley continuants by Munarini and Torri [7]. Cay-

ley’s approach may be perceived as a diagonalization technique in the ternomilogy
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of today, that is, generalizing first, then specializing. Such an understanding has

been spelled out by in [7]. To be precise, for n ≥ 2, the Cayley continuants are

referred to the n×n tridiagonal determinants, where the zero entries are left blank,

Un(x,y) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

x 1

y x 2

y−1 x . . .
. . . . . . . . .

. . . x n−1

y−n+2 x

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
n×n

.

For n = 0,1, the initial values are given by U0(x,y) = 1 and U1(x,y) = x. The

determinants satisfy the three-term recurrence for n ≥ 2,

Un(x,y) = xUn−1(x,y)− (n−1)(y−n+2)Un−2(x,y).

From the above recursion, Cayley [4] derived the exponential generating function

of Un(x,y) and he further computed the Sylvester’s determinants. An exposition

of Cayley’s approach can be found in [7]. It is noteworthy that several classical

polynomials can be derived from the Cayley continuants such as the Meixner

polynomials of the first kind and the Mittag-Leffler polynomials, see also [7].

A striking combinatorial interpretation of the Cayley continuants has been

found by Munarini and Torri [7] in terms of the joint distribution of the number of

odd cycles and the number of even cycles. Munarini [6] obtained a representation

of the Cayley continuants by means of the umbral operators.

For n ≥ 1, let Sn be the set of permutations of [n] = {1,2, . . . ,n}. For a permu-

tation σ ∈ Sn, let o(σ) and e(σ) be the number of odd cycles and the number of

even cycles of σ , respectively. Then for n ≥ 1,

Un(x,y) = ∑
σ∈Sn

xo(σ)(−y)e(σ).

To avoid the minus signs in the above combinatorial interpretation, one may
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replace y with −y. For n ≥ 2, we come to the determinant

Vn(x,y) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

x 1

−y x 2

−(y+1) x . . .
. . . . . . . . .

. . . x n−1

−(y+n−2) x

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
n×n

.

The initial values of Vn(x,y) for n = 0,1 remain the same as those of Un(x,y). The

first few values of Vn(x,y) are given below:

V0(x,y) = 1,

V1(x,y) = x,

V2(x,y) = x2 + y,

V3(x,y) = x3 +3xy+2x,

V4(x,y) = x4 +6x2y+8x2 +3y2 +6y,

V5(x,y) = x5 +10x3y+20x3 +15xy2 +50xy+24x.

Multiplying each odd row and each odd column of the determinant Vn(x,y) by

−1, it can be recast as

Vn(x,y) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

x −1

y x −2

y+1 x . . .
. . . . . . . . .

. . . x −(n−1)

y+n−2 x

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
n×n

. (1.1)

Indeed, the above form of the Cayley continuants is the basis of our wide band

extension.

The purpose of this paper is to make a connection between the wide band

Cayley continuants and the joint distribution of the number of r-regular cycles
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and the number of r-singular cycles. A cycle is called r-regular if its length is not

divisible by r, and is called r-singular if its length is divisible by r. We show that

the wide band Cayley continuants can be interpreted as the polynomials for the

joint distribution of the foregoing statistics.

2 The wide band Cayley continuants

We introduce the wide band Cayley continuants as an extension of the original

Cayley continuants based on the expression of Vn(x,y) in (1.1). Note that the

term continuant is kept in a larger sense, since the wide band Cayley continuants

are not restricted to be tridiagonal. For the sake of rigor, the wide band Cayley

determinants may be considered as an alternative terminology.

Recall that an n×n matrix A = (ai, j)n×n is called a (p,q)-band matrix if ai, j =

0 for j > i+ p or i > j + q, where 0 ≤ p,q ≤ n− 1, see Börgers [3, Definition

5.1]. Like the case of r = 2, we use V (r)
n (x,y) to denote the wide band Cayley

continuants, which generalize the Cayley continuants Un(x,y) with y replaced by

−y.

Consider a specific kind of n×n (1,r−1) band matrices A(r)
n (x,y), whose de-

terminants are called the wide band Cayley continuants, denoted by V (r)
n (x,y). For

r ≥ 2 and n≥ r, the first superdiagonal (above the main diagonal) is (−1,−2, · · · ,−(n−1)),

the main diagonal and the (r − 2) subdiagonals (below the main diagonal) have

the same entry x, and the (r−1)-st subdiagonal is (y,y−1,y+2, · · · ,y−n+ r), as
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illustrated below:

V (r)
n (x,y) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

x −1
... x −2

x
... x . . .

y x
... . . . . . .

y−1 x . . . . . . . . .
. . . . . . . . . . . . . . .

. . . x · · · x −(n−1)

y−n+ r x · · · x

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
n×n

.

In particular, for r = 2 and n ≥ 2, V (2)
n (x,y) takes the form of Vn(x,y) as in

(1.1). For r = 3 and n = 6, the wide band Cayley continuant V (3)
6 (x,y) is given by

V (3)
6 (x,y) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

x −1

x x −2

y x x −3

y−1 x x −4

y−2 x x −5

y−3 x x

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

As to the initial values, When n = 0, set A(r)
0 (x,y) to be the empty matrix with

determinant V (r)
0 (x,y) = 1. When n = 1, set A(r)

0 (x,y) = (x) and V (r)
1 (x,y) = x. For

2 ≤ n ≤ r−1, we define V (r)
n (x,y) to be a truncated form of the general case, that

is,

V (r)
n (x,y) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

x −1

x x −2

x x x . . .
...

...
... . . . . . .

x x x · · · x −(n−1)

x x x · · · x x

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
n×n

. (2.1)
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For example, we have

V (4)
2 (x,y) =

∣∣∣∣∣x −1

x x

∣∣∣∣∣ and V (4)
3 (x,y) =

∣∣∣∣∣∣∣∣
x −1

x x −2

x x x

∣∣∣∣∣∣∣∣ .

The initial values of V (r)
n (x,y) for 0 ≤ n ≤ r− 1 are given as follows, where

x(n) stands for the rising factorial, that is, x(0) = 1, and for n ≥ 1,

x(n) = x(x+1) · · ·(x+n−1).

Lemma 2.1. For r ≥ 2 and 0 ≤ n ≤ r−1, we have

V (r)
n (x,y) = x(n).

Proof. For n = 0,1, by definition there is nothing to be said. For n ≥ 2, expanding

the determinant in (2.1) along the last column, we see that V (r)
n (x,y) admits the

same recurrence relation as x(n).

Analogous to the recurrence relation for the Cayley continuants, the follow-

ing relation holds for V (r)
n (x,y), where (x)n stands for the lower factorial, that is,

(x)0 = 1 and for n ≥ 1,

(x)n = x(x−1) · · ·(x−n+1).

Theorem 2.2. For r ≥ 2 and n ≥ r, we have

V (r)
n (x,y) = x

r−1

∑
i=1

(n−1)i−1 V (r)
n−i(x,y)+(y+n− r)(n−1)r−1 V (r)

n−r(x,y). (2.2)

where V (r)
n (x,y) = x(n) for 0 ≤ n ≤ r−1.

Proof. Let A(r)
n (x,y) = (ai, j)n×n denote the matrix of the determinant V (r)

n (x,y).

For r ≥ 2 and n ≥ r, expanding the determinant V (r)
n (x,y) along the last row, we

get

V (r)
n (x,y) =

r

∑
i=1

an,n−i+1Cn,n−i+1,
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where Cn,n−i+1 is the cofactor of an,n−i+1. For i = 1, we have

Cn,n =V (r)
n−1(x,y) = (n−1)i−1 V (r)

n−i(x,y).

Next, for i = r, consider the case when an,1 ̸= 0. It can happen only when

n = r. In this case, we have

Cn,1 = (n−1)n−1 = (n−1)i−1 V (r)
n−i(x,y),

where we have made use of the fact that V (r)
0 (x,y) = 1.

If an,1 = 0, that is, n > r, for 2 ≤ i ≤ r, we have

Cn,n−i+1 = (−1)i−1

∣∣∣∣∣∣∣∣∣∣∣∣∣

A(r)
n−i(x,y)

*

−(n− i+1)

−(n− i+2)
. . .

* −(n−1)

∣∣∣∣∣∣∣∣∣∣∣∣∣
.

Taking the signs into account, we see that

Cn,n−i+1 = (n−1)i−1

∣∣∣A(r)
n−i(x,y)

∣∣∣= (n−1)i−1V (r)
n−i(x,y).

Since an,n−i+1 = x for 1 ≤ i ≤ r − 1 and an,n−r+1 = y + n − r, we obtain the

required recurrence relation for V (r)
n (x,y). By Lemma 2.1, the initial values of

V (r)
n (x,y) for 0 ≤ n ≤ r−1 are given by x(n), as expected.

We now turn to the exponential generating functions for the wide band Cayley

continuants. Write

Vr(x,y; t) = ∑
n≥0

V (r)
n (x,y)

tn

n!
.

Theorem 2.2 implies the differential equation

(1− tr)V ′
r (x,y; t) =

(
tr−1y+ x(1− tr−1)(1− t)−1)Vr(x,y; t),

with the initial value Vr(x,y;0)= 1. This gives the following formula for Vr(x,y; t).

As will be seen, the combinatorial interpretation in the next section along with

the known generating functions also leads to the same expression for Vr(x,y; t)

without resorting to a differential equation.
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Theorem 2.3. For r ≥ 2, we have

Vr(x,y; t) = (1− tr)
x−y

r (1− t)−x. (2.3)

For r = 2, the above formula reduces to the generating function of Vn(x,y) as

derived by Munarini and Torri [7], that is,

V2(x,y; t) = (1− t2)
x−y

2 (1− t)−x =
(1+ t)(x−y)/2

(1− t)(x+y)/2
. (2.4)

3 A combinatorial interpretation

In this section, we give a combinatorial interpretation of the above wide band

Cayley continuants.

For n≥ 0, define W (r)
n (x,y) to be the polynomial for the joint distribution of the

number of r-regular cycles and the number of r-singular cycles over permutations

of [n] with the assumption that W (r)
0 (x,y) = 1. To be more specific, define

W (r)
n (x,y) = ∑

σ∈Sn

xr(σ)ys(σ),

where r(σ) and s(σ) denote the number of r-regular cycles and the number of r-

singular cycles of σ , respectively. For r ≥ 2, by definition, we have W (r)
1 (x,y) = x.

For r = 2, Munarini and Torri [7] found a combinatorial interpretation of

Vn(x,y), that is,

Vn(x,y) =W (2)
n (x,y).

In the following theorem, we give a recurrence relation for W (r)
n (x,y), which

turns out to coincide with that for the wide band Cayley continuants. The argu-

ment is along the line of Munarini and Torri [7].

Theorem 3.1. For r ≥ 2 and n ≥ r, we have

W (r)
n (x,y) = x

r−1

∑
i=1

(n−1)i−1 W (r)
n−i(x,y)+(y+n− r)(n−1)r−1 W (r)

n−r(x,y), (3.1)

where W (r)
n (x,y) = x(n) for 0 ≤ n ≤ r−1.
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Proof. Let σ be a permutation of [n]. Assume σ is represented in the cycle

notation, and each cycle begins with its minimum element. In particular, we call

the cycle containing the element 1 the first cycle. There are three cases depending

on the length of the first cycle.

Case 1: The first cycle length i is less than r. Then it is a r-regular cycle with

weight x. Moreover, there are (n− 1)i−1 choices for the first cycle. Define the

weight of σ to be xr(σ)ys(σ). Then the sum of weights of all possible permutations

in this case equals

x
r−1

∑
i=1

(n−1)i−1W (r)
n−i(x,y).

Case 2: The first cycle length i equals r. Then it is a r-singular cycle of weight y.

Moreover, there are (n−1)r−1 choices for the first cycle. The sum of weights of

all possible permutations in this case equals

y(n−1)r−1W (r)
n−r(x,y).

Case 3: The first cycle length i is greater than r. Let C = (1 j2 · · · jr jr+1 · · ·)
be the first cycle, and let D = jr+1 jr+2 · · · be the permutation obtained from C

by removing the first r elements. Therefore, σ can be recovered from the cycle

C′ = (1 j2 · · · jr), the permutation D, and the rest of the cycles of σ . Now, there

are (n−1)r−1 choices for C′.

Assume that C′ is given. There are n− r elements left. For any permutation

π on these remaining elements, we need to specify an element to play the role of

jr+1. There are n− r choices. Hence there are (n−1)r choices for j2 j3 · · · jr+1.

At this point, we may reconstruct C from C′, the specified element and the per-

mutation π . Observe that C is r-regular if and only if the cycle ( jr+1 · · ·) in π is

r-regular, and so σ and π have the same weight. Thus the sum of weights of all

possible permutations σ in this case equals

(n−1)r W (r)
n−r(x,y).

Finally, when 1 ≤ n ≤ r− 1, each cycle in the permutation of [n] is r-regular

and has weight x. By the combinatorial interpretation of the signless Stirling
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numbers of the fist kind, we see that W (r)
n (x,y) is precisely x(n). This completes

the proof.

In closing, we remark that in view of the combinatorial interpretation of V (r)
n (x,y),

their generating function can be deduced from the generating functions for r-

regular permutations and r-cycle permutations. A permutation is called r-regular

if all its cycles are r-regular, whereas an r-cycle permutation is referred to a per-

mutation in which every cycle is r-singular. For n ≥ 1, let Regr(n) and Cycr(n)

denote the set of all r-regular permutations and the set of all r-cycle permutations

in Sn. As usual, we set |Regr(0)|= 1 and |Cycr(0)|= 1. Notice that the nota-

tions NODIVr(n) and PERMr(n), are used in Bóna-Mclennan-White [2] in lieu of

Regr(n) and Cycr(n).

The following generating functions have long been known, see [1, 2, 5].

∑
n≥0

|Regr(n)|
tn

n!
= exp

(
∑

n ̸=0 mod r
(n−1)!

tn

n!

)
=

(1− tr)1/r

1− t
,

∑
n≥0

|Cycr(n)|
tn

n!
= exp

(
∑

n≥1,n=0 mod r
(n−1)!

tn

n!

)
= (1− tr)−1/r.

It follows that

Vr(x,y; t) = exp

(
x ∑

n̸=0 mod r
(n−1)!

tn

n!

)
exp

(
y ∑

n≥1,n=0 mod r
(n−1)!

tn

n!

)

=

(
∑
n≥0

|Regr(n)|
tn

n!

)x(
∑
n≥0

|Cycr(n)|
tn

n!

)y

= (1− tr)
x−y

r (1− t)−x,

which is in agreement with (2.3).
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