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Abstract: In an award-winning expository article, Pozdnyakov and Steele gave a beautiful demonstration of
the ramifications of a basic bijection for permutations. The aim of this note is to connect this correspondence to
a seemingly unrelated problem concerning odd cycles and even cycles, arising in the combinatorial study of the
Cayley continuants by Munarini and Torri. In extreme cases, one encounters two special classes of permutations
of 2n elements with the same cardinality. A bijection of this appealing relation has been found by Sayag. A
combinatorial study of permutations with only odd cycles has been carried out by Bóna, Mclennan, and White.
We find an intermediate structure which leads to a linkage between these two antipodal structures. A recursive
setting reveals that everything boils down to only one trick — breaking the cycles.
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1. Introduction

In an award-winning exposition, Pozdnyakov and Steele [6] elaborated on many a facet of a basic property of
the cycle representation of permutations, viz., the number of permutations of [n] = {1, 2, . . . , n} (n ≥ 2) for
which 1 and 2 occur in the same cycle equals the number of permutations of [n] for which 1 and 2 do not occur
in the same cycle. The heart of the plot lies in an operation of breaking a cycle into two cycles.

More precisely, given a cycle containing both 1 and 2, we can split it into two segments, one starting with
with 1 and ending with the element preceding 2, whereas the other starting with 2 and ending with the element
preceding 1. Keep in mind that a cycle can be expressed as a sequence starting with the minimum element.

The objective of this note is to supplement the showcase of Pozdnyakov-Steele with one more story. In
a different scene, we meet up with two classes of permutations of [2n] (n ≥ 1). Let An denote the set of
permutations of [n] consisting of odd cycles, let B2n denote the set of permutations of [2n] consisting of even
cycles. A bijection between A2n and B2n can be found in [1, Section 6.2]. Let an = |An| and b2n = |B2n|.
As pointed out by Munarini and Torri [4], the generating function of the Cayley continuants specializes to the
generating functions for a2n and b2n. In fact, we have

a2n = b2n = ((2n− 1)!!)2.

The sequence {an} is listed as #A000246 in OEIS [5], and the sequence {b2n} is referred to as #A001818. A
further study of the sequence {an} can be found in Bóna-Mclennan-White [2].

We take a different avenue to provide a combinatorial interpretation by employing the Pozdnyakov-Steele
bijection with a twist of the roles of 1 and 2 in certain circumstances. As an intermediate step, we establish the
following correspondence. Let P2n be the set of permutations of [2n] consisting of odd cycles except that the
element 1 is in an even cycle.

Theorem 1.1. There exists a bijection between A2n and P2n.

2. A bijection

Before presenting the proof, let us consider how to apply the map in Theorem 1.1 to transform a permutation in
A2n to a permutation in B2n. Starting with a permutation in A2n, at the first step, we get a permutation with
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1 appearing in an even cycle. Iterating this procedure for the remaining odd cycles, we are led to a permutation
of even cycles. This proves that a2n = b2n.

The following inductive proof is essentially a description of a recursive algorithm.
Inductive Proof of Theorem 1.1. For n = 1, the required correspondence is merely the only way to break the
even cycle (12) into two odd cycles (1) and (2).

Assume that n > 1 and that there is a one-to-one correspondence between A2m and P2m for m < n. We are
going to put together a bijection between A2n and P2n. To this end, we define P 12

2n to be the set of permutations
in P2n such 1 and 2 belong to the same even cycle, and denote by P 1−2

2n the set of permutations in P2n such
that 1 appears in an even cycle but 2 appears in an odd cycle. Thus,

P2n = P 12
2n ∪ P 1−2

2n .

For an even cycle containing both 1 and 2, we may break it into two cycles with one containing 1 and the other
containing 2. Taking the parities into account, we find that

P 12
2n ↔ A1−2

2n ∪ Q1−2
2n ,

where A1−2
2n is the set of permutations of [2n] consisting of odd cycles such that 1 and 2 do not appear in the

same cycle, and Q1−2
2n is the set of permutations of [2n] such that 1 and 2 occur in different even cycles, whereas

all other cycles are odd.
Thus, it suffices to justify the following one-to-one correspondence

P 1−2
2n ∪ Q1−2

2n ↔ A12
2n, (2.1)

where A12
2n is the set of permutations of [2n] consisting of odd cycles such that 1 and 2 appear in the same cycle.

By splitting a permutation in A12
2n, we see that

A12
2n = P 1−2

2n ∪ U1−2
2n ,

where U1−2
2n is the set of permutations of [2n] such that 1 is in an odd cycle, 2 is in an even cycles and all other

cycles are odd.
In order to justify (2.1), we only need to establish the following correspondence

Q1−2
2n ↔ U1−2

2n . (2.2)

By exchanging the roles of 1 and 2, U1−2
2n can be identified with the set of permutations such that 1 occurs in

an even cycle and all other cycles are odd.
Notice that the relation (2.2) is nothing but a recursive statement of A2n ↔ P2n. To be more specific, let

V 1−2
2n denote the set of permutations obtained from those U1−2

2n by exchanging 1 and 2. Assume that σ is a
permutation in V 1−2

2n and C is the even cycle of σ containing 1.
Invoking the induction hypothesis with respect to all the odd cycles in σ, we get an even cycle containing 2

along with all other odd cycles, which is precisely a permutation in Q1−2
2n . This completes the proof.
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