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Abstract

Pondering upon the grammatical labeling of 0-1-2 increasing plane trees, we come to the realiza-
tion that the grammatical labels play a role as records of chopped off leaves of the original increasing
binary trees. While such an understanding is purely psychological, it does give rise to an efficient
apparatus to tackle the partial γ-positivity of the Eulerian polynomials on multiset Stirling permu-
tations, as long as we bear in mind the combinatorial meanings of the labels x and y in the Gessel
representation of a k-Stirling permutation by means of an increasing (k + 1)-ary tree. More pre-
cisely, we introduce a Foata-Strehl action on the Gessel trees resulting in an interpretation of the
partial γ-coefficients of the aforementioned Eulerian polynomials, different from the ones found by
Lin-Ma-Zhang and Yan-Huang-Yang. In particular, our strategy can be adapted to deal with the par-
tial γ-coefficients of the second order Eulerian polynomials, which in turn can be readily converted
to the combinatorial formulation due to Ma-Ma-Yeh in connection with certain statistics of Stirling
permutations.
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1 Introduction

This work is concerned with the partial γ-coefficients of the Eulerian polynomials on multiset Stirling
permutations, which are also called the Stirling polynomials.

For n ≥ 1, let Sn denote the set of permutations of [n] = {1, 2, . . . , n}. For a permutation
σ = σ1σ2 · · ·σn in Sn, we adopt the convention that a zero is patched both at the beginning and at
the end of σ, that is, σ0 = σn+1 = 0. An ascent of σ is defined to be an index i (1 ≤ i ≤ n) such
that σi−1 < σi, whereas a descent is defined to be an index i (1 ≤ i ≤ n) such that σi > σi+1. The
numbers of ascents and descents of σ are denoted by asc(σ) and des(σ), respectively. The bivariate
Eulerian polynomials An(x, y) are defined by

An(x, y) =
∑
σ∈Sn

xasc(σ)ydes(σ). (1.1)

Setting y = 1, An(x, y) takes the form of the usual Eulerian polynomials, or the descent polynomials
of Sn.

One of the most remarkable facts about the Eulerian polynomials is the γ-positivity discovered
by Foata and Schüzenberger [9], which has been extensively studied ever since, see, for example,
[1, 3, 6, 8].

We shall choose to work with the bivariate version An(x, y). For n ≥ 1, the following expression
of An(x, y) is called γ-expansion:

An(x, y) =

⌊(n+1)/2⌋∑
k=1

γn,k(xy)
k(x+ y)n+1−2k. (1.2)

The coefficients γn,k are called the γ-coefficients. Foata and Schüzenberger discovered a combina-
torial interpretation of the γ-coefficients implying the positivity. More precisely, it has been shown
that

γn,k = |{σ ∈ Sn | des(σ) = k, ddes(σ) = 0}|, (1.3)

where ddes(σ) means the number of double descents of σ, that is, the number of indices i such that
σi−1 > σi > σi+1.

As a notable extension of the Eulerian polynomials, Gessel and Stanley [12] introduced the no-
tion of Stirling permutations whose descent polynomials have been called the second order Eulerian
polynomials.

For n ≥ 1, let [n]2 denote the multiset {12, 22, . . . , n2}, where i2 signifies two occurrences of i.
A permutation σ on [n]2 is said to be a Stirling permutation if for any i, the elements between the two
occurrences of i in σ, if any, are greater than i. For n ≥ 1, the set of Stirling permutations of [n]2
is usually denoted by Qn. As before, we assume that a Stirling permutation is patched a zero both
at the beginning and at the end. The statistics asc and des can be analogously defined for Stirling
permutations.

The number of Stirling permutations inQn with k+1 descents, often denoted byC(n, k), is called
the second order Eulerian number. The generating function Cn(x) of C(n, k) has been referred to as

2



the second order Eulerian polynomial. For Stirling permutations, one more statistic naturally comes
on the scene, that is, the number of plateaux. It appears that the notion of a plateau was first introduced
by Dumont [7] under the name of a repetition. Let σ = σ1σ2 · · ·σ2n ∈ Qn. An index i (1 ≤ i ≤ 2n)

is called a plateau if σi = σi+1. The number of plateaux of σ is denoted by plat(σ).

Bóna [2] proved that the three statistics asc, plat and des are equidistributed overQn. Janson [14]
constructed an urn model to prove the symmetry of the joint distribution of the three statistics.

In fact, Dumont [7] defined the trivariate second order Eulerian polynomials

Cn(x, y, z) =
∑
σ∈Qn

xasc(σ)ydes(σ)zplat(σ), (1.4)

which can be regarded as an extension of the second order Eulerian polynomials of Gessel-Stanley
and the bivariate Eulerian polynomials. Apparently, when a Stirling permutation σ ∈ Qn has n
plateaux, it can be considered as a permutation on [n] with each element i replaced by ii. It was
noticed by Dumont that Cn(x, y, z) are symmetric in x, y, z.

The question of γ-positivity for Cn(x, y, z) has been studied by Ma-Ma-Yeh [17]. Write

Cn(x, y, z) =

n∑
i=1

zi
⌊(2n+1−i)/2⌋∑

j=0

γn,i,j(xy)
j(x+ y)2n+1−i−2j , (1.5)

which is called the partial γ-expansion of Cn(x, y, z). The coefficients γn,i,j are called the partial γ-
coefficients. Making use of a context-free grammar argument, Ma-Ma-Yeh showed that Cn(x, y, z)

are partial γ-positive in the sense that the coefficients γn,i,j are nonnegative. Moreover, they obtained
a combinatorial interpretation of γn,i,j resorting to certain statistics on Stirling permutations.

The structure of a Stirling permutation can be further extended to a multiset. Throughout this
paper, we assume that n ≥ 1. Unless specified otherwise, we always assume that

M = {1k1 , 2k2 , . . . , nkn}, (1.6)

where ki ≥ 1 for all i and iki stands for ki occurrences of i. Moreover, we always designate K to
denote k1 + k2 + · · ·+ kn.

A permutation σ = σ1σ2 . . . σK of M is said to be a Stirling permutation if σi = σj with i < j,
then σk ≥ σi for any i < k < j. The set of Stirling permutations of M will be denoted by QM . For
M = [n]k = {1k, 2k, . . . , nk}, a Stirling permutation on M is called a k-Stirling permutation.

The statistics asc, des and plat for Stirling permutations in Qn can be literally carried over to
QM . Then the Eulerian polynomials on Stirling permutations of a multiset M can be defined by

CM (x, y, z) =
∑

σ∈QM

xasc(σ)ydes(σ)zplat(σ), (1.7)

see also [16]. In particular, the descent polynomial over QM is often denoted by

QM (x) =
∑

σ∈QM

xdes(σ), (1.8)

see also [19]. As shown by Brenti [4], QM (x) has only real roots for any multiset M .
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WhileCM (x, y, z) are no longer symmetric in general, they are symmetric in x and y. This means
that CM (x, y, z) can be expressed as

CM (x, y, z) =
K−n∑
i=0

zi
⌊(K+1−i)/2⌋∑

j=1

γM,i,j(xy)
j(x+ y)K+1−i−2j . (1.9)

The above relation (1.9) is called the partial γ-expansion of CM (x, y, z). The coefficients γM,i,j

are called the partial γ-coefficients of CM (x, y, z). The nonnegativity of the coefficients γM,i,j is
referred to as the partial γ-positivity.

The partial γ-positivity for several multivariate polynomials associated various classes of permu-
tations has recently been studied in Ma-Ma-Yeh [17], Lin-Ma-Zhang [16] and Yan-Huang-Yang [18].

The objective of this paper is to present a combinatorial treatment of the partial γ-coefficients
of CM (x, y, z). In particular, our strategy can be adapted to deal with the partial γ-coefficients of
the second order Eulerian polynomials, which in turn can be readily converted to the combinatorial
formulation obtained by Ma-Ma-Yeh [17]. Our combinatorial interpretation of γM,i,j is built on the
Gessel trees which are increasing plane trees in which the internal vertices are represented by distinct
numbers, whereas in the combinatorial framework of Yan, Huang and Yang [18], two vertices are
allowed to be represented by the same number.

The underlying combinatorial structure employed in this work is that of a Gessel tree for a Stirling
permutation of a multiset. Our main result (Theorem 3.1) is a combinatorial interpretation in light of
canonical Gessel trees. A closely related approach is to utilize context-free grammars, which leads to
the notion of pruned Gessel trees. A careful study of the Gessel correspondence reveals the properties
needed to turn Theorem 3.1 into an equivalent statement on multiset Stirling permutations (Theorem
5.2). Specializing to the setQn of Stirling permutations, we are led to the combinatorial interpretation
of the partial γ-coefficients (Theorem 6.1) due to Ma-Ma-Yeh [17].

The rest of this paper is organized as follows. In Section 2, we give an overview of the Gessel
correspondence between increasing trees and multiset Stirling permutations. We also address a re-
fined property of the Gessel correspondence. Section 3 is devoted to a classification of Gessel trees
based on the structure of canonical Gessel trees. An operation in the spirit of the Foata-Strehl ac-
tion [10] is introduced to serve the purpose. As a main result of this work, we present a combinatorial
interpretation of the partial γ-coefficients of CM (x, y, z). In Section 4, we present a context-free
grammar approach. In fact, such a consideration has spurred the notion of pruned Gessel trees and
has provided a motivation for the Foata-Strehl action in Section 3. The aim of Section 5 is to present
a combinatorial explanation of the partial γ-coefficients in terms of multiset Stirling permutations. In
Section 6, we explain how to get to the result of Ma-Ma-Yeh. It turns out that the symmetry property
of Cn(x, y, z) is required to fulfill the task.

2 The Gessel correspondence

The Gessel correspondence [11] is an extension of the classical bijection between permutations and
increasing binary trees to Stirling permutations on a multiset, see also [6, 8, 15].

4



It is the aim of this paper to utilize this correspondence to study the γ-positivity and the partial
γ-positivity of the Eulerian polynomials on multiset Stirling permutations. Gessel [11] established
a bijection ϕ between k-Stirling permutations and (k + 1)-ary increasing trees in which only the
internal vertices are labeled and represented by solid dots, whereas the external vertices (leaves) are
not labeled and represented by circles.

For a Stirling permutation σ on M . If σ = ∅, let ϕ(σ) be the tree with only one (unlabeled)
vertex. If σ ̸= ∅, let i be the smallest element of σ. Then σ can be uniquely decomposed as
w0 i w1 i · · · wk−1 i wk, where wj is either empty or a Stirling permutation for all 0 ≤ j ≤ k. Set
i to be the root of ϕ(T ), and set ϕ(Tj) to be the j-th subtree (counting from left to right) of i. This
procedure yields a recursive construction of ϕ(σ).

For example, let σ = 33552217714664 ∈ Q7, the corresponding ternary increasing tree is illus-
trated in Figure 1.

1

2

3

x z
5

x z y

z y

7

x z y

4

x
6

x z y

y

Figure 1: A ternary increasing tree.

Recall that for the classical representation of permutations by increasing binary trees, every vertex
(regardless of an internal vertex or a leaf) is labeled, whereas in the Gessel representation, only the
internal vertices are labeled, and external vertices (leaves) are not labeled, where a leaf is drawn as a
circle.

In the Gessel representation, a leaf is called an x-leaf if it is the first child, and is called a y-leaf
if it is the last child; otherwise, it is called a z-leaf. Such leaves are crucial for the study of the
γ-positivity. As will be seen, they are the natural ingredients of a Foata-Strehl action.

Furthermore, Janson-Kuba-Panholzer [15] introduced the notion of a j-plateau of a k-Stirling
permutation. In this event, an index i is said to be a j-plateau of σ if σi = σi+1 = r and σi is the j-th
occurrence of r in σ. If a leaf v of T is the j-th child for some 2 ≤ j ≤ k, then v is called a zj-leaf.
Janson-Kuba-Panholzer [15] showed that a zj-leaf in a (k + 1)-ary increasing tree corresponds to a
j-plateau of σ.

By a Gessel tree onM we mean a plane tree with internal vertices 1, 2, . . . , n along with unlabeled
external vertices such that the internal vertex i has exactly ki + 1 children and the internal vertices
form an increasing tree. For instance, Figure 2 exhibits a Gessel tree onM = {12, 2, 32, 42, 52, 63, 7}.
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Figure 2: A Gessel tree on M = {12, 2, 32, 42, 52, 63, 7}.

Denote by xleaf(T ), yleaf(T ) and zleaf(T ) the numbers of x-leaves, y-leaves and z-leaves, re-
spectively. The following property can be easily deduced from the recursive construction of the Gessel
correspondence.

Proposition 2.1 Let n and M be given as before. The Gessel map ϕ establishes a one-to-one corre-
spondence between Stirling permutations of M and Gessel trees on M . Moreover, let σ ∈ QM and
T = ϕ(σ). Then

(asc(σ), des(σ),plat(σ)) = (xleaf(T ), yleaf(T ), zleaf(T )). (2.1)

Instead of reproducing a proof of the above property, we discuss a refined description of the Gessel
correspondence that will be needed later in this paper. For this purpose, we shall introduce the notion
of the Gessel decomposition of a Stirling permutation on M .

Let σ be a Stirling permutation on M . For any 1 ≤ i ≤ n, the i-segment of σ, denoted by Si(σ),
is defined to be the unique sequence σrσr+1 · · ·σs containing the element i, where 1 ≤ r ≤ s ≤ K,
such that σr−1 < σr and σs > σs+1 with the convention σ0 = σK+1 = 0. It is clear from the
definition of a Stirling permutation of M that the i-segment of σ is well-defined. In fact, one sees that
Si(σ) contains all the occurrences of i in σ.

For example, for the Stirling permutation σ = 5533211466674 of M = {12, 2, 32, 42, 52, 63, 7}
corresponding to the Gessel tree in Figure 2, we have

S1(σ) = 5533211466674,

S2(σ) = 55332,

S3(σ) = 5533,

S4(σ) = 466674,

S5(σ) = 55,

S6(σ) = 6667,

S7(σ) = 7.
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The idea of the Gessel correspondence can be perceived as a decomposition of an i-segment of a
Stirling permutation. Let σ be a Stirling permutation on a multiset M . The Gessel decomposition of
the i-segment Si(σ) is defined to be a decomposition

Si(σ) = w0 i w1 i w2 i · · · i wki , (2.2)

where for each 0 ≤ t ≤ ki, wt is either empty or a j-segment for some j.

We now come to the following refined property of the Gessel correspondence.

Proposition 2.2 Let n and M be given as before. Let σ be a Stirling permutation on M and let T
be the corresponding Gessel tree. Assume that σp is the first occurrence of i in σ and σq is the last
occurrence of i in σ. Then the vertex i has an x-leaf in T if and only if p is an ascent and i has a
y-leaf if and only if q is a descent of σ.

Proof. First, assume that i has an x-leaf in T . By the Gessel correspondence, w0 in the Gessel
decomposition of σ as given in (2.2) is empty. Since an i-segment of σ is surrounded by two elements
smaller than i, σp is immediately preceded by a smaller element. This means that p is an ascent of
σ. Conversely, if p is an ascent of σ, then w0 must be empty, and so i has an x-leaf in T . The same
reasoning applies to a descent of σ involving the last occurrence of i and a y-leaf of i in T , and hence
the proof is complete.

3 A Foata-Strehl action on Gessel trees

To give a combinatorial interpretation of the γ-coefficients, we shall define an action on a Gessel tree,
which plays the same role as the original Foata-Strehl group action for the γ-coefficients. Such an
action is often called a modified Foata-Strehl action.

Let T be a Gessel tree on M . We say that an x-leaf in T is balanced if its parent has a y-leaf;
otherwise, we say that the x-leaf is unbalanced. Similarly, a y-leaf is said to be balanced if its parent
has an x-leaf; otherwise, it is said to be unbalanced.

For 1 ≤ i ≤ n, the Foata-Strehl action ψi is defined as follows. It does nothing to T unless
the internal vertex i possesses an unbalanced y-leaf. In case the vertex i has unbalanced y-leaf, then
ψi(T ) is defined to be the Gessel tree obtained from T by interchanging the first child (along with its
the subtree) and the last child of vertex i, and keeping the order of the other children unchanged. As a
result, the unbalanced y-leaf becomes an unbalanced x-leaf. Figure 3 depicts the action of ψ2 on the
Gessel tree in Figure 2.

LetGM be the set of Gessel trees onM . By Proposition 2.1, the Eulerian polynomialsCM (x, y, z)

as defined in (1.4) can be expressed in terms of the Gessel trees, namely,

CM (x, y, z) =
∑

T∈GM

xxleaf(T )yyleaf(T )zzleaf(T ). (3.1)

The above connection is our starting point to arrive at a combinatorial interpretation of the partial
γ-coefficients of CM (x, y, z) in the context of Gessel trees. We need a special class of Gessel trees,
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Figure 3: Action of ψ2 on the Gessel tree in Figure 2.
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Figure 4: A canonical Gessel tree.

which we call canonical Gessel trees. To be more specific, we say that a Gessel tree is canonical if it
does not contain any internal vertex having an unbalanced y-leaf.

Theorem 3.1 Let n, M and K be given as before. Then

CM (x, y, z) =
K−n∑
i=0

zi
⌊(K+1−i)/2⌋∑

j=1

γM,i,j(xy)
j(x+ y)K+1−i−2j , (3.2)

where γM,i,j is the number of canonical Gessel trees on M with i z-leaves, j y-leaves.

Proof. Let GM,i denote the set of Gessel trees on M with i z-leaves. Then Theorem 3.1 is equivalent
to ∑

T∈GM,i

xxleaf(T )yyleaf(T )zzleaf(T ) =
∑

T∈HM,i

(xy)yleaf(T )(x+ y)K+1−i−2yleaf(T )zi, (3.3)

where HM,i denotes the set of canonical trees T ∈ GM,i without any unbalanced y-leaves.

For each T ∈ HM,i, we define Orbit(T ) to be the set of Gessel trees S that can be transformed
to T via the Foata-Strehl action. Clearly, the number of z-leaves is invariant under any Foata-Strehl
action. For any internal vertex j of T with an unbalanced x-leaf, there is a Gessel tree S such that
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ψj(S) = T . Let uxleaf(T ) and bxleaf(T ) denote the numbers of unbalanced x-leaves and balanced
x-leaves of T , respectively. Since there are no unbalanced y-leaves in T ,

bxleaf(T ) = yleaf(T ).

Given that the total number of leaves in T equals K + 1, we find that

2 yleaf(T ) + uxleaf(T ) = xleaf(T ) + yleaf(T ) = K + 1− i,

that is,
uxleaf(T ) = K + 1− i− 2yleaf(T ). (3.4)

Therefore, ∑
S∈Orbit(T )

xxleaf(T)yyleaf(T)zzleaf(T ) = (xy)yleaf(T )(x+ y)K+1−i−2yleaf(T )zi.

Summing over all canonical Gessel trees in HM,i yields (3.3), and hence the proof is complete.

4 A context-free grammar approach

In this section, we present a context-free grammar approach to the partial γ-positivity of CM (x, y, z).
Observe that the construction of Gessel trees implies a recursive formula for the computation of the
Eulerian polynomials CM (x, y, z). For the case of Stirling permutations, the trivariate second order
Eulerian polynomials Cn(x, y, z) are defined by (1.4). Dumont [7] deduced the recursion

Cn(x, y, z) = xyz

(
∂

∂x
+

∂

∂y
+

∂

∂z

)
Cn−1(x, y, z), (4.1)

where n ≥ 1 and C0(x, y, z) = x, see also Haglund-Visontai [13].

Theorem 4.1 Let n and M be given as before. Set M ′ = {1k1 , 2k2 , . . . , (n− 1)kn−1}. Then

CM (x, y, z) = xyzkn−1

(
∂

∂x
+

∂

∂y
+

∂

∂z

)
CM ′(x, y, z) (4.2)

with C∅(x, y, z) = x.

In the language of context-free grammars, for k ≥ 1, define the grammar

Gk = {x→ xyzk−1, y → xyzk−1, z → xyzk−1}. (4.3)

Let Dk denote the formal derivative with respect to the grammar Gk. Then the above relation (4.2)
can be rewritten as

CM (x, y, z) = DknDkn−1 · · ·Dk1(x), (4.4)

where DknDkn−1 · · ·Dk1 is meant to apply Dk1 first, followed by the applications of Dk2 and so
on. The grammatical expression is informative to establish a connection to the partial γ-positivity of
CM (x, y, z). Thanks to the idea of change of variables due to Ma-Ma-Yeh [17], we set

u = xy, v = x+ y
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to get
Dk(u) = Dk(xy) = Dk(x)y + xDk(y) = xy(x+ y)zk−1 = uvzk−1, (4.5)

Dk(v) = Dk(x+ y) = 2xyzk−1 = 2uzk−1, (4.6)

and
Dk(z) = xyzk−1 = uzk−1. (4.7)

Now, for the variables u, v, z, the grammar Gk can be recast as

Gk = {u→ uvzk−1, v → 2uzk−1, z → uzk−1}. (4.8)

The following theorem can be viewed as an equivalent form of Theorem 3.1 restated on a variation
of Gessel trees, called pruned Gessel trees, along with a grammatical labeling by using the variables
u, v and z. It is worth mentioning that the grammatical labeling can be thought as a guideline to
generate the γ-coefficients. Indeed, it drops a hint in search for a Foata-Strehl action.

Intuitively, a pruned Gessel tree is obtained from a Gessel tree by chopping off the x-leaves and
y-leaves. We have to say that this viewpoint alone is of no substantial help. Here comes the idea of
characterizing pruned Gessel trees. Assume that T is a Gessel tree on M . Then internal vertices of
the pruned Gessel tree obtained from T are of the following four types.

Type 1: i has ki + 1 children, and neither the first nor the last child is a leaf. This means that i has
neither an x-leaf nor a y-leaf in T .

Type 2: i has ki children, and the first child of i is not a leaf. This means that i has a y-leaf, but no
x-leaf, in T . In this case, the vertex i is associated with a label y.

Type 3: i has ki children, and the last child of i is not a leaf. This means that i has an x-leaf, but no
y-leaf, in T . In this case, the vertex i is associated with a label x.

Type 4: i has ki − 1 children. This means that i has both an x-leaf and a y-leaf in T . In this case, the
vertex i is associated a label xy.

Conversely, the four types of vertices are sufficient for the generation of pruned Gessel trees.
Figure 5 displays the pruned tree of the canonical Gessel tree in Figure 4 along with the (x, y)-
labeling and the (u, v)-labeling.

When restricted to pruned canonical Gessel trees, Type 2 vertices are not allowed to show up.
This property enables us to substitute the label xy with u, and the label x with v.

The weight of a pruned canonical Gessel tree T , denoted by w(T ), is defined to be the product of
the (u, v)-labels. As usual, the empty product is meant to be 1. For example, the weight of the pruned
Gessel tree in Figure 5 equals u3v3z5. The γ-polynomial γM (u, v, z), called the γ-polynomial of M ,
is defined to be the generating function of the partial γ-coefficients in (3.2). To be more specific, let

γM (u, v, z) =
K−n∑
i=0

zi
⌊(K+1−i)/2⌋∑

j=1

γM,i,ju
jvK+1−i−2j . (4.9)
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Figure 5: A pruned canonical Gessel tree.

Theorem 4.2 Let n and M be given as before. Then

γM (u, v, z) =
∑

T∈PM

w(T ), (4.10)

where PM denotes the set of pruned canonical Gessel trees on M .

For the case of Stirling permutations, the above grammar Gk reduces to the grammar given by
Ma-Ma-Yeh [17], namely,

G = {u→ uvz, v → 2uz, z → uz}, (4.11)

where we have used z in place of w in [17]. The pruned canonical Gessel trees for Stirling permuta-
tions serve as an underlying combinatorial structure for the grammar in (4.11).

The following theorem asserts that pruned canonical Gessel trees on a multiset M with the (u, v)-
labeling can be generated in the same way as successively applying the formal derivatives Dk1 , Dk2 ,
. . ., Dkn to x.

Theorem 4.3 Let n and M be given as before. Then

γM (u, v, z) = DknDkn−1 · · ·Dk1(x). (4.12)

The proof is in the same line as the argument in [5] for the grammatical labeling of 0-1-2 plane
trees. Instead of presenting a proof in full detail, it suffices to focus on the action corresponding to
the rule v → 2uzk−1 of the grammar Gk as in (4.8).

Assume that T is a pruned canonical Gessel tree on

M ′ = {1k1 , 2k2 , . . . , (n− 1)kn−1}.

As before, we have M = {1k1 , 2k2 , . . . , nkn}. Put k = kn. Suppose that T has a vertex i with the
label v. This means that i has k children with the last child not being a leaf. There are two ways to
generate a pruned canonical Gessel tree S from T by appending the vertex n to T as a child of i.

11
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Figure 6: The two possibilities for the rule v → 2uzk−1.

Case 1. Make n the first child of i. Then i will no longer have a label, and n will be assigned the
label u. Meanwhile, n will have k − 1 z-leaves. We see that this operation corresponds to the rule
v → uzk−1.

Case 2. Swap the first child and the last child along with their subtrees in the pruned canonical Gessel
tree S obtained in Case 1. Then we get a pruned canonical Gessel tree on M . Summing up, these two
cases correspond to the rule v → 2uzk−1.

For example, for the pruned canonical Gessel tree T on M ′ = {12, 2, 32, 42, 52, 6} in Figure 6,
there are two ways to append the vertex 7 to T as a child of 4 to produce a pruned canonical Gessel
tree on M =M ′ ∪ {73}.

It must be understood, however, that the notion of pruned canonical Gessel trees is somewhat
cosmetic, in the sense that whereas it does not change anything in nature, it may have an effect on
the impression. In fact, we might as well keep the original (x, y)-leaves, and transport the labels of
the (x, y)-leaves to their parents. Nevertheless, the pruned version bears the advantage of taking a
simpler form especially for permutations where the structure of 0-1-2 increasing plane trees comes
into play.

To conclude this section, we claim that the grammar Gk captures all the possibilities of construct-
ing pruned canonical Gessel trees on M from the ones on M ′. It is only a matter of exercise to verify
that this is indeed the case.

5 The partial γ-coefficients

In this section, we demonstrate that the combinatorial interpretation of the partial γ-coefficients of the
Eulerian polynomials of Stirling permutations on a multiset falls into the scheme of canonical Gessel
trees.

First, we need to translate the defining property of an unbalanced y-leaf into the language of
Stirling permutations. This goal can be achieved with the aid of Proposition 2.2 on the implications
of the x-leaves and y-leaves to Stirling permutations.
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Let σ be a Stirling permutation of M . Observe that a descent i arises only when σi is the last
occurrence. Similarly, an ascent i arises only when σi is the first occurrence. Assume that an index
i is a descent of σ, and assume that σp is the first occurrence of σi, where p ≤ i. As an extension
of the notion of a double descent of a permutation of [n], we say that i is a double fall of σ if i is a
descent and p− 1 is a descent as well. Keep in mind the convention that σ0 = σK+1 = 0. Denote by
dfall(σ) the number of double falls of σ. For example, for the Stirling permutation σ = 2533114664,
the descents 2, 9, 10 are not double falls, whereas the descent 4 is a double fall.

Proposition 5.1 Let n and M be given as before. Assume that σ is a Stirling permutation on M and
T is the corresponding Gessel tree of σ. Then an index i is a double fall of σ if and only if the vertex
σi in T has an unbalanced y-leaf.

Proof. Let j = σi, and let Sj(σ) be the j-segment with the first occurrence of j at position p and the
last occurrence of j at position q. Moreover, let

Sj(σ) = w0 j w1 j · · · wkj−1 j wkj (5.1)

be the Gessel decomposition of Sj(σ). Assume that j has an unbalanced y-leaf. We proceed to
show that i is a double fall of σ. The y-leaf indicates that the last factor wkj is empty, from which
it follows that i is a descent, since Sj(σ) is surrounded by smaller elements at both ends. Suppose
the first occurrence of j appears at position p. It remains to confirm that p − 1 is also a descent.
Since the y-leaf is unbalanced, the segment w0 in (5.1) is nonempty. By the definition of the Gessel
decomposition, any element in w0 is greater than j, so that p − 1 must be a descent. This completes
the proof.

Given the above characterization of unbalanced y-leaves in terms of Stirling permutations, we
obtain the following interpretation of the partial γ-coefficients.

Theorem 5.2 Let n,M andK be given as before. For 0 ≤ i ≤ K−n and 1 ≤ j ≤ ⌊(K + 1− i)/2⌋,
we have

γM,i,j = |{σ ∈ QM | plat(σ) = i, des(σ) = j, dfall(σ) = 0}|. (5.2)

Notice that a double fall of a Stirling permutation of a multiset boils down to a double descent of a
permutation of [n]. Therefore, when specialized toM = [n], Theorem 5.2 reduces to the γ-expansion
(1.2) of the bivariate Eulerian polynomials An(x, y) due to Foata and Schüzenberger [9].

6 A theorem of Ma-Ma-Yeh

In this section, we show that our combinatorial interpretation of the partial γ-coefficients given the
preceding section reduces to a theorem of Ma-Ma-Yeh [17] subject to a restatement prompted by a
symmetry consideration.
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Recall that the partial γ-coefficients γn,i,j for Cn(x, y, z) are defined by

Cn(x, y, z) =

n∑
i=1

zi
⌊(2n+1−i)/2⌋∑

j=0

γn,i,j(xy)
j(x+ y)2n+1−i−2j . (6.1)

Let σ ∈ Qn. An index 1 ≤ i ≤ 2n is called an ascent-plateau if σi−1 < σi = σi+1 and a descent-
plateau if σi−1 > σi = σi+1. Let aplat(σ) and dplat(σ) denote the numbers of ascent-plateaux and
descent-plateaux, respectively. The following result is due to Ma-Ma-Yeh [17].

Theorem 6.1 For n ≥ 1, 0 ≤ i ≤ n and 1 ≤ j ≤ ⌊(2n+ 1− i)/2⌋, we have

γn,i,j = |{σ ∈ Qn | des(σ) = i, aplat(σ) = j, dplat(σ) = 0}|. (6.2)

For the case of Stirling permutations, that is, M = [n]2, we write Gn for GM . By Theorem 3.1,
γn,i,j equals the number of trees T ∈ Gn with i z-leaves and j y-leaves but with no unbalanced
y-leaves. In the meantime, Theorem 5.2 provides a formulation resorting to the notion of a double
fall of a Stirling permutation. In this situation, a double fall can be described as follows. Let n ≥ 1

and σ ∈ Qn. Assume that i is a descent of σ. Let σi = j. Then σi must be the second occurrence of
j in σ. Assume that σp is the first occurrence of j in σ. Now, the descent i is called a double fall if
p− 1 is a descent of σ as well.

While there is no doubt that Theorem 5.2 offers a legitimate combinatorial statement, one could
not help wondering about the connection to the Ma-Ma-Yeh story. It turns out that the answer lies in
the symmetry of the polynomialsCn(x, y, z). As far as Stirling permutations are concerned, Theorem
5.2 can be reassembled with regards to a slight twist of canonical Gessel trees. In fact, one only needs
to interchange the roles of the x-leaves and the y-leaves. Equivalently, we define a canonical Gessel
tree on [n]2, or a canonical ternary increasing tree, by imposing the constraint that there are no internal
vertices having a z-leaf, but no x-leaf.

Theorem 6.2 For n ≥ 1, the partial γ-coefficient γn,i,j for Stirling permutations as defined by (6.1)
equals the number of canonical ternary increasing trees on [n]2 with i y-leaves and j x-leaves.

Notice that the above explanation of γn,i,j can be directly justified in the same manner as the
proof of Theorem 3.1. The following proposition gives a characterization of Stirling permutations
corresponding to canonical ternary increaing trees.

Proposition 6.3 Let n ≥ 1 and σ ∈ Qn. Let T be the corresponding ternary increasing tree of σ.
Then σ has a descent-plateau if and only if T contains an internal vertex having a z-leaf, but no
x-leaf. That is to say, σ has no descent-plateaux if and only if T is canonical.

For example, the vertex 2 in the ternary increasing tree in Figure 1 has a z-leaf, but no x-leaf. The
corresponding Stirling permutation σ = 33552217714664 has a descent-plateau 522. On the other
hand, Figure 7 furnishes a canonical ternary increasing tree. The corresponding Stirling permutation
σ = 22335517714664 contains no descent-plateaux.
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Figure 7: A canonical ternary increasing tree.

The proof of the above proposition is analogous to that of Proposition 5.1. One more thing,
we must add that the statistic aplat(σ) reflects the number of internal vertices in the corresponding
ternary increasing tree that have an x-leaf and a z-leaf simultaneously. Thus we have reconfirmed
the assertion of Ma-Ma-Yeh in the context of canonical ternary increasing trees in connection with
Stirling permutations.
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[2] M. Bóna, Real zeros and normal distribution for statistics on Stirling permutations defined by
Gessel and Stanley, SIAM J. Discrete Math., 23 (2009), 401–406.
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