Semi-invariants of Binary Forms and Sylvester's Theorem

William Y.C. Chen ${ }^{1}$ and Ivy D.D. Jia ${ }^{2}$
${ }^{1}$ Center for Applied Mathematics
Tianjin University
Tianjin 300072, P. R. China
${ }^{2}$ School of Science
Tianjin University of Commerce
Tianjin 300134, P. R. China
Emails: ${ }^{1}$ chenyc@tju.edu.cn, ${ }^{2} \mathrm{ivyjia} @ \mathrm{tjcu} . e d u . c n$
Dedicated to Doron Zeilberger on the Occasion of His Seventieth Birthday

Abstract

We obtain a combinatorial formula related to the shear transformation for semiinvariants of binary forms, which implies the classical characterization of semiinvariants in terms of a differential operator. Then, we present a combinatorial proof of an identity of Hilbert, which leads to a relation of Cayley on semi-invariants. This identity plays a crucial role in the original proof of Sylvester's theorem on semi-invariants in connection with the Gaussian coefficients. Moreover, we show that the additivity lemma of Pak and Panova which yields the strict unimodality of the Gaussian coefficients for $n, k \geq 8$ can be deduced from the ring property of semi-invariants.

Mathematics Subject Classification: 05A17, 05E10, 13A50
Keywords: Hilbert's identity, Sylvester's theorem, binary forms, semi-diagrams, semi-invariants, Gaussian coefficients, strict unimodality

1 Introduction

This work is a continuation of the exploration of the Gaussian coefficients or the q binomial coefficients by means of semi-invariants of binary forms recently carried out in [3]. We will be mainly concerned with the combinatorial perspectives related to Sylvester's proof of the unimodality conjecture of Cayley. A key identity used by Sylvester is a relation due to Cayley, which turns out to be a consequence of an identity of Hilbert. We shall give a combinatorial interpretation of the identity of Hilbert. Moreover, we show that the additivity lemma of Pak and Panova leading to the strict unimodality of the Gaussian coefficients for $n, k \geq 8$ can be deduced from the ring property of semi-invariants.

Let $p(k, n, m)$ denote the number of partitions of m contained in a $k \times n$ rectangle, then the Gaussian coefficients can be expressed as

$$
\left[\begin{array}{c}
n+k \tag{1.1}\\
k
\end{array}\right]=\sum_{m=0}^{n k} p(k, n, m) q^{m}
$$

see $[1,13]$.
The Gaussian coefficients are symmetric in q. Cayley [2] conjectured in 1856 that the Gaussian coefficients are unimodal, and it was proved by Sylvester [14] in 1878 resorting to semi-invariants of binary forms. There has been an extensive literature on this subject, see, for example, [7, 10-12, 15, 16]. It is worth mentioning that O'Hara [7] found a constructive proof. Zeilberger [16] discovered an identity, known as the KOH theorem, which justifies the unimodality.

As the first step to bring Sylvester's theorem to a combinatorial ground, let us take a look at the classical characterization of semi-invariants in terms of the differential operator D. A semi-invariant of a binary n-form is a polynomial $I\left(a_{0}, a_{1}, \ldots, a_{n}\right)$ with rational coefficients such that

$$
\begin{equation*}
I\left(a_{0}, a_{1}, \ldots, a_{n}\right)=I\left(a_{0}^{\prime}, a_{1}^{\prime}, \ldots, a_{n}^{\prime}\right) \tag{1.2}
\end{equation*}
$$

where the a_{i}^{\prime} are determined by the shear transformation with respect to a variable z, that is, for $0 \leq i \leq n$,

$$
\begin{equation*}
a_{i}^{\prime}=a_{i}+\binom{i}{1} a_{i-1} z+\binom{i}{2} a_{i-2} z^{2}+\cdots+a_{0} z^{i} \tag{1.3}
\end{equation*}
$$

Let

$$
\begin{equation*}
D=a_{0} \frac{\partial}{\partial a_{1}}+2 a_{1} \frac{\partial}{\partial a_{2}}+3 a_{2} \frac{\partial}{\partial a_{3}}+\cdots+n a_{n-1} \frac{\partial}{\partial a_{n}} . \tag{1.4}
\end{equation*}
$$

Semi-invariants can be characterized in terms of the differential operator D, see Cayley [2], Sylvester [14], or Hilbert [6]. More precisely, a polynomial $I\left(a_{0}, a_{1}, \ldots, a_{n}\right)$ is a semi-invariant of a binary n-form if and only if $D(I)=0$.

Note that if I and J are two semi-invariants of a binary n-form, then so are $I+$ J and $I J$. Based on a combinatorial interpretation of the operator D, we show that $I\left(a_{0}^{\prime}, a_{1}^{\prime}, \ldots, a_{n}^{\prime}\right)$ can be expressed in terms of the polynomial $I\left(a_{0}, a_{1}, \ldots, a_{n}\right)$ and the operator D, in the spirit of the Taylor expansion. This formula immediately leads to the characterization of semi-invariants in terms of the operator D.

The second objective of this paper is to present a combinatorial proof of an identity of Hilbert involving the operators D and Δ. The operator Δ is defined by

$$
\begin{equation*}
\Delta=n a_{1} \frac{\partial}{\partial a_{0}}+(n-1) a_{2} \frac{\partial}{\partial a_{1}}+\cdots+a_{n} \frac{\partial}{\partial a_{n-1}} \tag{1.5}
\end{equation*}
$$

The identity of Hilbert [6] reads as follows: For $n, k \geq 0$, and $0 \leq m \leq n k$, let λ be a partition of m contained in a $k \times n$ rectangle, and let $c=n k-2 m$. Then for $i \geq 1$,

$$
\begin{equation*}
D \Delta^{i}\left(a_{\lambda}\right)-\Delta^{i} D\left(a_{\lambda}\right)=i(c-i+1) \Delta^{i-1}\left(a_{\lambda}\right) . \tag{1.6}
\end{equation*}
$$

As an application of Sylvester's theorem, we show that the additivity lemma of Pak and Panova $[8,9]$ can be deduced from the ring property of semi-invariants. The additivity lemma for the Gaussian coefficients was established via a connection with the Kronecker coefficients in the representation theory of the symmetric group as well as the semigroup property of the Kronecker coefficients due to Christandl, Harrow and Mitchison [4].

Lemma 1.1. Assume that $k_{1}, k_{2}, n \geq 2$, at least one of k_{1}, k_{2} and n is greater than two and at least one of k_{1}, k_{2} and n is even. If the strict unimodality holds for $\left[\begin{array}{c}n+k_{1} \\ n\end{array}\right]$ and $\left[\begin{array}{c}n+k_{2} \\ n\end{array}\right]$, then it holds for $\left[\begin{array}{c}n+k_{1}+k_{2} \\ n\end{array}\right]$.

To conclude the introduction, we recall that the strict unimodality proved by Pak and Panova says that for $n, k \geq 8$ and $2 \leq m \leq n k / 2$,

$$
\begin{equation*}
p(k, n, m)>p(k, n, m-1) . \tag{1.7}
\end{equation*}
$$

2 The Operators D and Δ

A binary form of degree n, or a binary n-form, is a homogeneous polynomial in x and y,

$$
\begin{equation*}
f(x, y)=a_{0} x^{n}+\binom{n}{1} a_{1} x^{n-1} y+\binom{n}{2} a_{2} x^{n-2} y^{2}+\cdots+a_{n} y^{n} \tag{2.1}
\end{equation*}
$$

where the coefficients $a_{0}, a_{1}, \ldots, a_{n}$ are regarded as variables. Consider the shear transformation: $x=x^{\prime}+z y^{\prime}$ and $y=y^{\prime}$, where z is treated as a variable. Suppose that under this transformation, the binary form $f(x, y)$ becomes

$$
\begin{equation*}
f^{\prime}\left(x^{\prime}, y^{\prime}\right)=a_{0}^{\prime} x^{\prime n}+\binom{n}{1} a_{1}^{\prime} x^{\prime n-1} y^{\prime}+\cdots+a_{n}^{\prime} y^{\prime n} \tag{2.2}
\end{equation*}
$$

It is easily checked that for $0 \leq i \leq n$,

$$
\begin{equation*}
a_{i}^{\prime}=a_{i}+\binom{i}{1} a_{i-1} z+\binom{i}{2} a_{i-2} z^{2}+\cdots+a_{0} z^{i} \tag{2.3}
\end{equation*}
$$

We say that a polynomial $I\left(a_{0}, a_{1}, \ldots, a_{n}\right)$ with rational coefficients is a semi-invariant of the binary form $f(x, y)$ if

$$
\begin{equation*}
I\left(a_{0}, a_{1}, \ldots, a_{n}\right)=I\left(a_{0}^{\prime}, a_{1}^{\prime}, \ldots, a_{n}^{\prime}\right) \tag{2.4}
\end{equation*}
$$

see, for example, [5].
To determine whether a polynomial $I\left(a_{0}, a_{1}, \ldots, a_{n}\right)$ satisfies the above condition (2.4), we are led to an expansion of $I\left(a_{0}^{\prime}, a_{1}^{\prime}, \ldots, a_{n}^{\prime}\right)$ as a polynomial of z. As expected, the operator D comes to the scene. Recall that D is given by

$$
\begin{equation*}
D=a_{0} \frac{\partial}{\partial a_{1}}+2 a_{1} \frac{\partial}{\partial a_{2}}+3 a_{2} \frac{\partial}{\partial a_{3}}+\cdots+n a_{n-1} \frac{\partial}{\partial a_{n}} . \tag{2.5}
\end{equation*}
$$

Theorem 2.1. For $n \geq 0$, and for any polynomial $I\left(a_{0}, a_{1}, \ldots, a_{n}\right)$ over the rational numbers, we have

$$
\begin{equation*}
I\left(a_{0}^{\prime}, a_{1}^{\prime}, \ldots, a_{n}^{\prime}\right)=\sum_{i \geq 0} D^{i} I\left(a_{0}, a_{1}, \ldots, a_{n}\right) \frac{z^{i}}{i!} \tag{2.6}
\end{equation*}
$$

While we do not intend to claim that the above formula (2.6) is new due to the lack of accessible literature, at least it is worth noting that such a formulation makes the characterization of semi-invariants transparent in the sense that if $D(I)$ vanishes, then so does $D^{i}(I)$ for any $i \geq 2$. As will be seen, the idea behind (2.6) serves as an embarkation point to a combinatorial understanding of the identity (1.6) of Hilbert.

Here is an illustration of Theorem 2.1. For a monomial $a^{\nu}=a_{0}^{\nu_{0}} a_{1}^{\nu_{1}} \cdots a_{n}^{\nu_{n}}$, we define its degree by

$$
\nu_{0}+\nu_{1}+\cdots+\nu_{n}
$$

and its weight by

$$
\nu_{1}+2 \nu_{2}+\cdots+n \nu_{n}
$$

It is clear that when the operator D is applied to a monomial a^{ν}, it preserves the degree and decreases the weight by one. For example, let

$$
f(x, y)=a_{0} x^{3}+3 a_{1} x^{2} y+3 a_{2} x y^{2}+a_{3} y^{3}
$$

and let

$$
\begin{equation*}
I\left(a_{0}, a_{1}, a_{2}, a_{3}\right)=c_{1} a_{0}^{2} a_{3}+c_{2} a_{0} a_{1} a_{2}+c_{3} a_{1}^{3} \tag{2.7}
\end{equation*}
$$

Upon the substitution (2.3), we get

$$
\begin{aligned}
I\left(a_{0}^{\prime}, a_{1}^{\prime}, a_{2}^{\prime}, a_{3}^{\prime}\right)= & c_{1} a_{0}^{2} a_{3}+c_{2} a_{0} a_{1} a_{2}+c_{3} a_{1}^{3} \\
& +\left(\left(3 c_{1}+c_{2}\right) a_{0}^{2} a_{2}+\left(2 c_{2}+3 c_{3}\right) a_{0} a_{1}^{2}\right) z \\
& +3\left(c_{1}+c_{2}+c_{3}\right) a_{0}^{2} a_{1} z^{2} \\
& +\left(c_{1}+c_{2}+c_{3}\right) a_{0}^{3} z^{3} .
\end{aligned}
$$

On the other hand,

$$
\begin{aligned}
D(I) & =\left(3 c_{1}+c_{2}\right) a_{0}^{2} a_{2}+\left(2 c_{2}+3 c_{3}\right) a_{0} a_{1}^{2} \\
D^{2}(I) & =6\left(c_{1}+c_{2}+c_{3}\right) a_{0}^{2} a_{1}, \\
D^{3}(I) & =6\left(c_{1}+c_{2}+c_{3}\right) a_{0}^{3} .
\end{aligned}
$$

We see that (2.6) holds in this case.
To lay out a combinatorial setting for Theorem 2.1, we adopt the common notation of a partition λ of m contained in a $k \times n$ rectangle, that is, $\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{k}\right)$, where $n \geq \lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{k} \geq 0$ and $\lambda_{1}+\lambda_{2}+\cdots+\lambda_{k}=m$. Accordingly, we use a_{λ} to denote the monomial $a_{\lambda_{1}} a_{\lambda_{2}} \cdots a_{\lambda_{k}}$.

Figure 1: The Young diagram and a semi-diagram of shape $(4,3,2,2)$.

Recall that the Young diagram or the Ferrers diagram of a partition λ is a collection of shaded boxes or cells arranged in left-justified rows with λ_{i} boxes in the i-th row. The partition λ is referred to as the shape of the diagram. For instance, the Young diagram of shape $(4,3,2,2)$ is illustrated on the left in Figure 1. In this paper, we introduce the notion of a semi-diagram, which is a Young diagram with some shaded cells filled with a minus sign and subsequently turned into hollow cells. The diagram on the right in Figure 1 is a semi-diagram of shape $(4,3,2,2)$ with three minus signs.

To a semi-diagram T of shape λ, we associate it with a weight as follows. For $1 \leq$ $i \leq k$, if the i-th row contains r_{i} shaded cells and s_{i} minus signs, we define its weight as $a_{r_{i}} s^{s_{i}}$. The weight of a semi-diagram T, denoted by $w(T)$, is then defined to be the product of weights of all rows. Of course, the weight of an empty row is set to be a_{0}. For example, the weight of the semi-diagram in Figure 1 equals $a_{3} a_{2}^{2} a_{1} z^{3}$.

In terms of semi-diagrams, the substitution (2.3) can be interpreted as filling some of the shaded cells of a Young diagram with a minus sign and turning them into hollow cells. Consider only one row with i shaded cells, which has weight a_{i}. For $0 \leq j \leq i$, there are $\binom{i}{j}$ ways to turn this row into a semi-diagram by placing a minus sign to j shaded cells and turning them into hollow cells. Any of the resulting semi-diagrams has weight $a_{i-j} z^{j}$. This operation is in accordance with the substitution (2.3).

For example, under the shear transformation, a_{3} becomes

$$
a_{3}^{\prime}=a_{3}+3 a_{2} z+3 a_{1} z^{2}+a_{0} z^{3},
$$

which is the sum of the weights of the semi-diagrams

We are now ready to prove Theorem 2.1.
Proof of Theorem 2.1. It suffices to show that for any monomial a_{λ},

$$
\begin{equation*}
a_{\lambda}^{\prime}=a_{\lambda_{1}}^{\prime} a_{\lambda_{2}}^{\prime} \cdots a_{\lambda_{k}}^{\prime}=\sum_{i=0}^{m} D^{i}\left(a_{\lambda}\right) \frac{z^{i}}{i!} . \tag{2.8}
\end{equation*}
$$

Let $K_{i}(\lambda)$ denote the set of semi-diagrams of λ containing i minus signs, where $0 \leq$ $i \leq m$. Set

$$
\begin{equation*}
\sum_{T \in K_{i}(\lambda)} w(T)=W_{i}(\lambda) . \tag{2.9}
\end{equation*}
$$

Then we have

$$
\begin{equation*}
a_{\lambda}^{\prime}=\sum_{i=0}^{m} W_{i}(\lambda) \tag{2.10}
\end{equation*}
$$

In particular, the semi-diagrams containing only one minus sign give rise to the coefficient of z in $I\left(a_{0}^{\prime}, a_{1}^{\prime}, \ldots, a_{n}^{\prime}\right)$. This operation of filling only one shaded cell of a Young diagram with a minus sign and turning it into a hollow cell can be described by the action of the operator D on a_{λ}, and this explains where the operator D comes from combinatorially.

Moreover, one realizes that in general the coefficient of z^{i} in $I\left(a_{0}^{\prime}, a_{1}^{\prime}, \ldots, a_{n}^{\prime}\right)$ can also be expressed in terms of the operator D. Indeed, the action of D^{i} on a_{λ} can be interpreted as placing i distinguishable minus signs in a Young diagram and turning them into hollow cells. But for the coefficient of z^{i} in $I\left(a_{0}^{\prime}, a_{1}^{\prime}, \ldots, a_{n}^{\prime}\right)$, the minus signs in a semi-diagram are regarded indistinguishable. This yields the relation

$$
\begin{equation*}
D^{i}\left(a_{\lambda}\right) \frac{z^{i}}{i!}=W_{i}(\lambda) \tag{2.11}
\end{equation*}
$$

Combining (2.10) and (2.11) gives (2.8). This completes the proof.
Now we turn to the vertical shear transformation:

$$
x=x^{\prime \prime}, \quad y=z x^{\prime \prime}+y^{\prime \prime}
$$

where z is considered as a variable. Under this transformation, the binary form $f(x, y)$ becomes

$$
f^{\prime \prime}\left(x^{\prime \prime}, y^{\prime \prime}\right)=a_{0}^{\prime \prime} x^{\prime \prime n}+\binom{n}{1} a_{1}^{\prime \prime} x^{\prime \prime n-1} y^{\prime \prime}+\cdots+a_{n}^{\prime \prime} y^{\prime \prime n}
$$

where, for $0 \leq i \leq n$,

$$
\begin{equation*}
a_{i}^{\prime \prime}=a_{i}+\binom{n-i}{1} a_{i+1} z+\binom{n-i}{2} a_{i+2} z^{2}+\cdots+a_{n} z^{n-i} \tag{2.12}
\end{equation*}
$$

A polynomial $I\left(a_{0}, a_{1}, \ldots, a_{n}\right)$ with rational coefficients is called a semi-invariant with respect to the vertical shear transformation provided that

$$
\begin{equation*}
I\left(a_{0}, a_{1}, \ldots, a_{n}\right)=I\left(a_{0}^{\prime \prime}, a_{1}^{\prime \prime}, \ldots, a_{n}^{\prime \prime}\right) \tag{2.13}
\end{equation*}
$$

A polynomial $I\left(a_{0}, a_{1}, \ldots, a_{n}\right)$ is a semi-invariant with respect to the vertical shear transformation if and only if $\Delta(I)=0$, see Hilbert [6].

To give a combinatorial interpretation of the operator Δ, we need to have a full picture of the Young diagram of a partition λ contained in a $k \times n$ rectangle. More precisely, we shall use shaded cells for the cells in the shape of λ and use hollow cells for the cells outside the shape of λ. For example, below is the depiction of the partition $\lambda=(4,2,1,0)$ contained in a 4×5 rectangle:

Consider a single row diagram with i shaded cells and $n-i$ hollow cells, whose weight is a_{i}. For $0 \leq j \leq n-i$, there are $\binom{n-i}{j}$ ways to turn this row into a semi-diagram by placing a plus sign to j hollow cells and turning them into shaded cells. Any of the resulting semi-diagrams has weight $a_{i+j} z^{j}$, where we define the weight of a plus sign to be z. For example, for $n=6$, under the vertical shear transformation, a_{3} becomes

$$
a_{3}^{\prime \prime}=a_{3}+3 a_{4} z+3 a_{5} z^{2}+a_{6} z^{3},
$$

which is the sum of the weights of the semi-diagrams

In particular, the action of the operator Δ can be interpreted in terms of the operation of filling only one hollow cell in a Young diagram of λ with a plus sign and turning it into a shaded cell. Analogous to Theorem 2.1, we have the following expansion.

Theorem 2.2. For $n \geq 0$ and for any polynomial $I\left(a_{0}, a_{1}, \ldots, a_{n}\right)$ over the rational numbers, we have

$$
\begin{equation*}
I\left(a_{0}^{\prime \prime}, a_{1}^{\prime \prime}, \ldots, a_{n}^{\prime \prime}\right)=\sum_{i \geq 0} \Delta^{i} I\left(a_{0}, a_{1}, \ldots, a_{n}\right) \frac{z^{i}}{i!} \tag{2.14}
\end{equation*}
$$

3 Sylvester's Theorem

The following theorem of Sylvester [14] establishes a connection between the Gaussian coefficients and semi-invariants. For $0 \leq m \leq n k / 2$, let

$$
\begin{equation*}
\delta(k, n, m)=p(k, n, m)-p(k, n, m-1) \tag{3.1}
\end{equation*}
$$

with the convention that $p(k, n,-1)=0$.
Theorem 3.1. For $n, k \geq 0$ and $0 \leq m \leq n k / 2$, the number of semi-invariants of a binary n-form of degree k and weight m equals $\delta(k, n, m)$.

Theorem 3.1 also takes the following form, as Sylvester [14] chose to work with.
Theorem 3.2. For $n, k \geq 0$ and $0 \leq m \leq n k / 2$, the number of semi-invariants of a binary n-form of degree k and weight not exceeding m equals $p(k, n, m)$.

The following identity (3.2) of Cayley [2] crops up in Sylvester's proof of the unimodality of the Gaussian coefficients, see [14]. Cayley used this relation to construct covariants.

It might be worth mentioning that from a combinatorial point of view, the identity of Hilbert is easier to justify than the identity of Cayley for it does not involve the conditions on semi-invariants. It should also be noted that to pass from Hilbert's identity to Cayley's identity, the condition $m \leq n k / 2$ is required because it is a constraint for semi-invariants, see Cayley [2].

Theorem 3.3. For $n, k \geq 0$, and $0 \leq m \leq n k / 2$, let I be a semi-invariant of a binary n-form of degree k and weight m, and let $c=n k-2 m$. Then, for $i \geq 1$,

$$
\begin{equation*}
D \Delta^{i}(I)=i(c-i+1) \Delta^{i-1}(I) \tag{3.2}
\end{equation*}
$$

Since $D(I)=0$ for a semi-invariant I, we see that the above relation is a consequence of the identity (1.6) of Hilbert [6] with a_{λ} being replaced by a semi-invariant I.

To make the paper self-contained, we give an exposition of Sylvester's proof. The consideration of the dimension identity (3.6) makes the argument easier to understand in terms of an equality, instead of arguing with two inequalities in opposite directions as described by Sylvester.

We define $Q_{n}(k, m)$ as the vector space of polynomials in $a_{0}, a_{1}, \ldots, a_{n}$ over the rational numbers that are homogeneous of degree k and weight m. We shall use $S_{n}(k, m)$ to denote the vector space of semi-invariants of degree k and weight m, that is,

$$
\begin{equation*}
S_{n}(k, m)=\left\{I \in Q_{n}(k, m) \mid D(I)=0\right\} . \tag{3.3}
\end{equation*}
$$

The number of semi-invariants of degree k and weight m of a binary n-form is referred to as the dimension of the vector space $S_{n}(k, m)$. For example, $\operatorname{dim} S_{4}(4,6)=2$. Below are two semi-invariants of degree 4 and weight 6 of a binary 4 -form:

$$
\begin{align*}
& I_{1}=3 a_{1}^{2} a_{2}^{2}-4 a_{1}^{3} a_{3}-2 a_{0} a_{1} a_{2} a_{3}+3 a_{0}^{2} a_{3}^{2}+4 a_{0} a_{1}^{2} a_{4}-4 a_{0}^{2} a_{2} a_{4}, \tag{3.4}\\
& I_{2}=a_{0} a_{2}^{3}-2 a_{0} a_{1} a_{2} a_{3}+a_{0}^{2} a_{3}^{2}+a_{0} a_{1}^{2} a_{4}-a_{0}^{2} a_{2} a_{4} . \tag{3.5}
\end{align*}
$$

Notice that for $m=0, \operatorname{dim} S_{n}(k, 0)=p(k, n, 0)=1$.
Proof of Theorem 3.2. For $0 \leq i \leq m+1$, let

$$
V_{i}=D^{i}\left(Q_{n}(k, m)\right),
$$

and let

$$
T_{i}: V_{i-1} \rightarrow V_{i}
$$

where $1 \leq i \leq m+1$, that is, $T_{i}(I)=D(I)$ for any $I \in V_{i-1}$. Then, the kernel of T_{i}, denoted by $\operatorname{ker} T_{i}$, namely,

$$
\operatorname{ker} T_{i}=\left\{I \in V_{i-1} \mid D(I)=0\right\}
$$

is a subspace of V_{i-1}. Hence

$$
\begin{equation*}
\operatorname{dim} V_{i-1}=\operatorname{dim} \operatorname{ker} T_{i}+\operatorname{dim} V_{i} \tag{3.6}
\end{equation*}
$$

Notice that while acting on a monomial in $a_{0}, a_{1}, \ldots, a_{n}$, the operator D preserves the degree and lowers the weight by one. On the other hand, $Q_{n}(k, 0)$ is generated by a_{0}^{k}, which is a semi-invariant, and so $D\left(Q_{n}(k, 0)\right)=0$. It follows that

$$
V_{m+1}=D^{m+1}\left(Q_{n}(k, m)\right)=0 .
$$

Iterating (3.6) gives

$$
\begin{equation*}
\operatorname{dim} V_{0}=\operatorname{dim} \operatorname{ker} T_{1}+\operatorname{dim} \operatorname{ker} T_{2}+\cdots+\operatorname{dim} \operatorname{ker} T_{m+1} \tag{3.7}
\end{equation*}
$$

It is apparent that

$$
\begin{equation*}
\operatorname{ker} T_{i} \subseteq S_{n}(k, m-i+1) \tag{3.8}
\end{equation*}
$$

The real challenge is to show that

$$
\begin{equation*}
\operatorname{ker} T_{i}=S_{n}(k, m-i+1) \tag{3.9}
\end{equation*}
$$

that is, the successive applications of the operator D resulting in V_{i-1} do not leave out any semi-invariants in $S_{n}(k, m-i+1)$.

For $i=1$, nothing needs to be said since by definition,

$$
\begin{equation*}
\operatorname{ker} T_{1}=S_{n}(k, m) \tag{3.10}
\end{equation*}
$$

But for $i=2$, what does (3.9) mean? Note that a semi-invariant I in $S_{n}(k, m-1)$ should come from a polynomial in $Q_{n}(k, m-1)$. However, (3.9) indicates that we can restrict our attention only to $D\left(Q_{n}(k, m)\right)$, which is a subspace of $Q_{n}(k, m-1)$, and we can still get all the semi-invariants in $S_{n}(k, m-1)$.

Sylvester realized that in some sense the operator D is the inverse of the operator Δ, as guaranteed by the identity (3.2) of Cayley. In other words, the action of the operator Δ ensures that every semi-invariant in $S_{n}(k, m-i+1)$ can be shielded from the annihilation of the operator D.

For example, for $n=3, k=3$ and $m=0$, it is clear that $Q_{3}(3,0)$ is generated by a_{0}^{3}, which is a semi-invariant of degree three and weight zero. Now, $V_{3}=D^{3}\left(Q_{3}(3,3)\right)$. One may wonder whether a_{0}^{3} is still there in V_{3}. Employing the operator Δ, we find that

$$
\Delta^{3}\left(a_{0}^{3}\right)=18 a_{0}^{2} a_{3}+324 a_{0} a_{1} a_{2}+162 a_{1}^{3},
$$

which is a polynomial in $Q_{3}(3,3)$. Then it is easily verified that

$$
D^{3} \Delta^{3}\left(a_{0}^{3}\right)=3024 a_{0}^{3} .
$$

So a_{0}^{3} remains in V_{3}, and this is in accordance with the fact that $S_{3}(3,0)$ is generated by a_{0}^{3}.

The above reasoning is valid for the general case. For any semi-invariant I in $S_{n}(k, m-$ $i+1), \Delta^{i-1}(I)$ falls into $Q_{n}(k, m)$. Thanks to the identity (3.2), we deduce that by successively applying the operator D to $\Delta^{i-1}(I)$, one recovers the semi-invariant I if we do not mind the nonzero constant. To be more specific, we deduce that I truly belongs to V_{i-1}, and hence the proof is complete.

Examining the proof of Sylvester, one sees that what Sylvester tried to demonstrate is the following property of D.

Theorem 3.4. For $n, k \geq 0$ and $1 \leq m \leq n k / 2$, we have

$$
\begin{equation*}
Q_{n}(k, m-1)=D\left(Q_{n}(k, m)\right) \tag{3.11}
\end{equation*}
$$

or equivalently, the transformation D is a surjection from $Q_{n}(k, m)$ to $Q_{n}(k, m-1)$.

Once the above surjectivity is in hand, it immediately follows that the number of semiinvariants, namely, the dimension of the kernel of D, is given by $\delta(k, n, m)$. As far as the unimodality of the Gaussian coefficients is concerned, we see that Sylvester's proof also contains a justification of the injectivity of the transformation Δ.

Theorem 3.5. For $n, k \geq 0$ and $1 \leq m \leq n k / 2$, the transformation Δ is an injection from $Q_{n}(k, m-1)$ to $Q_{n}(k, m)$.

Proctor [11] came up with a proof of the unimodality of the Gaussian coefficients by introducing two operators different from D and Δ, while taking a notice of the surjectivity and injectivity of D and Δ. It would be appealing to reach a better understanding of these properties from a combinatorial angle.

4 A Combinatorial Proof of Hilbert's Identity

Based on the combinatorial interpretations of the operators D and Δ, we give a combinatorial proof of the identity of Hilbert [6], as stated below.

Theorem 4.1. For $n, k \geq 0$, and $0 \leq m \leq n k$, let λ be a partition of m contained in a $k \times n$ rectangle, and let $c=n k-2 m$. Then, for $i \geq 1$,

$$
\begin{equation*}
D \Delta^{i}\left(a_{\lambda}\right)-\Delta^{i} D\left(a_{\lambda}\right)=i(c-i+1) \Delta^{i-1}\left(a_{\lambda}\right) . \tag{4.1}
\end{equation*}
$$

The above identity of Hilbert plays a fundamental role in the characterization of invariants as well as the construction of covariants.

To present a combinatorial interpretation of the above relation, we recall that the diagram of a partition λ contained in a $k \times n$ rectangle contains shaded cells inside the shape of λ and hollow cells outside the shape of λ. A semi-diagram will also be represented in the same manner. While we shall encounter some signs filled in semi-diagrams, the weight of a row with r shaded cells will be defined by a_{r}. So the signs will not affect the weight of a semi-diagram.

Proof of Theorem 4.1. The action of $D \Delta^{i}$ on a_{λ} can be understood as placing i distinguishable plus signs in hollow cells of the Young diagram of λ and turning them into shaded cells, and then placing a minus sign in a shaded cell and turning it into a hollow cell.

Similarly, the application of $\Delta^{i} D$ to a_{λ} means to fill a shaded cell of the Young diagram of shape λ with a minus sign and to turn it into a hollow cell, then fill i hollow cells with distinguishable plus signs and turn them into shaded cells.

Now, we use the symbol \pm to denote a cell that is filled with a plus sign first and subsequently filled with a minus sign. Similarly, \mp denotes a cell that is filled with a minus sign first and subsequently filled with a plus sign.

With respect to the computation of $D \Delta^{i}\left(a_{\lambda}\right)-\Delta^{i} D\left(a_{\lambda}\right)$, the semi-diagrams that do not contain any \pm or \mp signs would cancel out.

In fact, it is readily seen that there is a one-to-one correspondence between the semidiagrams in $D \Delta^{i}\left(a_{\lambda}\right)$ that do not contain any \pm signs and the semi-diagrams in $\Delta^{i} D\left(a_{\lambda}\right)$ that do not contain any \mp signs. For example, when $k=4, n=5$ and $\lambda=(4,2,1,0)$, the following semi-diagram occurs in $D \Delta^{3}\left(a_{\lambda}\right)$, and it is also in $\Delta^{3} D\left(a_{\lambda}\right)$:

Therefore, it suffices to consider the cases when the sign \pm or \mp is involved.
Let us consider the semi-diagrams generated by $D \Delta^{i}\left(a_{\lambda}\right)$ containing the sign \pm. For example, when $k=4, n=5$ and $\lambda=(4,2,1,0)$, the following semi-diagram is an illustration of such a configuration generated by $D \Delta^{3}\left(a_{\lambda}\right)$:

These configurations under consideration can be produced from the Young diagram of λ in a $k \times n$ rectangle by placing i distinguishable plus signs in hollow cells and subsequently adding a minus sign to a shaded cell with a plus sign and turning it into a hollow cell. On the other hand, semi-diagrams with a \pm cell and $i-1$ distinguishable plus signs (outside the shape of λ, to be precise) can be constructed in an alternative way.

We may choose $i-1$ plus signs from the i distinguishable plus signs, place them in the hollow cells of the Young diagram of λ contained in a $k \times n$ rectangle, turn them into shaded cells, and finish with filling a hollow cell with the \pm sign and keeping it hollow. Notice that the location of a hollow cell with the \pm sign does not affect the weight of a semi-diagram. That is to say, the cell with the symbol \pm might as well be viewed just as a hollow cell. Therefore, if the \pm sign is not taken into consideration, the semi-diagrams containing $i-1$ distinguishable plus signs are generated by applying the operator Δ^{i-1} to a_{λ}. Note that there are $n k-m-(i-1)$ hollow cells left for the moment, any of which can be chosen as a residence of the \pm sign. It follows that the total contribution of weights in this case amounts to

$$
\begin{equation*}
i(n k-m-(i-1)) \Delta^{i-1}\left(a_{\lambda}\right) . \tag{4.2}
\end{equation*}
$$

We now consider the semi-diagrams generated by $\Delta^{i} D\left(a_{\lambda}\right)$ containing the sign \mp. For example, when $k=4, n=5$ and $\lambda=(4,2,1,0)$, the following semi-diagram arises in $\Delta^{3} D\left(a_{\lambda}\right)$:

In general, the involved configurations in this case can be generated from a Young diagram of shape λ contained in a $k \times n$ rectangle by placing a minus sign in a shaded cell, and then distributing i distinguishable plus signs to $i-1$ purely hollow cells and the remaining plus sign to the cell with a minus sign. Note that the cells carrying the \mp sign as well as the plus sign are all shaded in the end.

There is also another way to construct such configurations. We may choose $i-1$ plus signs from the i distinguishable plus signs, place them in the hollow cells and turn them into shaded cells, and then fill a shaded cell with the sign \mp and keep it shaded. Since there are m choices for a shaded cell to be filled with the sign \mp, the weights of all the feasible configurations generated by $\Delta^{i} D\left(a_{\lambda}\right)$ add up to

$$
\begin{equation*}
i m \Delta^{i-1}\left(a_{\lambda}\right) \tag{4.3}
\end{equation*}
$$

Casting up (4.2) and (4.3), we arrive at

$$
\begin{equation*}
i(n k-2 m-i+1) \Delta^{i-1}\left(a_{\lambda}\right) \tag{4.4}
\end{equation*}
$$

in agreement with the right hand side of (4.1). This completes the proof.
It is worth mentioning that Hilbert obtained another identity on D and Δ. As before, let $c=n k-2 m$. Then, for $i \geq 1$,

$$
\begin{equation*}
D^{i} \Delta\left(a_{\lambda}\right)-\Delta D^{i}\left(a_{\lambda}\right)=i(c+i-1) D^{i-1}\left(a_{\lambda}\right) \tag{4.5}
\end{equation*}
$$

Using a similar approach to the identity (4.1), it is not hard to provide a combinatorial proof of (4.5). The detailed description is left out. Utilizing (4.5), Hilbert demonstrated that the number of invariants of a binary n-form of degree k and weight $m=n k / 2$ equals $\delta(k, n, n k / 2)$, where at least one of k and n is even. In fact, Hilbert deduced that the operator Δ is an injection from $Q_{n}(k, n k / 2-1)$ to $Q_{n}(k, n k / 2)$. If not, there would exist a nonzero polynomial I that can be written as a linear combination of the basis elements of $Q_{n}(k, n k / 2-1)$ such that in some way the action of Δ on I yields an invariant in $Q_{n}(k, n k / 2)$, that is, $D \Delta(I)=0$. On the other hand, there must exist i such that $D^{i}(I)=0$ but $D^{i-1}(I) \neq 0$. This incurs a contradiction with (4.5).

We also remark that the argument of Hilbert is valid for semi-invariants with $0 \leq m \leq$ $n k / 2$ where the parity constraint on n and k may be lifted. So it can be regarded as an alternative proof of Sylvester's theorem. Note that in the case when at least one of k and n is even and $m=n k / 2$, a semi-invariant of degree k and weight m turns out to be an invariant.

5 The Additivity Lemma of Pak and Panova

In this section, we present a derivation of the additivity lemma of Pak and Panova in the context of semi-invariants. As will be seen, it is a consequence of the ring property of semi-invariants. In view of Theorem 3.1, to prove the strict unimodality of $\left[\underset{n}{n+k_{1}+k_{2}}\right]$, it
suffices to show that for any $2 \leq m \leq\left\lfloor n\left(k_{1}+k_{2}\right) / 2\right\rfloor$, there exists a semi-invariant of degree $k_{1}+k_{2}$ and weight m.

Proof of Lemma 1.1. It is not difficult to see that under the conditions on n, k_{1}, k_{2}, for any $4 \leq m \leq\left\lfloor n\left(k_{1}+k_{2}\right) / 2\right\rfloor$, we can always express m as $m_{1}+m_{2}$ such that $2 \leq m_{1} \leq$ $\left\lfloor n k_{1} / 2\right\rfloor$ and $2 \leq m_{2} \leq\left\lfloor n k_{2} / 2\right\rfloor$.

Since at least one of k_{1}, k_{2} and n is even, we find that

$$
\begin{equation*}
\left\lfloor n k_{1} / 2\right\rfloor+\left\lfloor n k_{2} / 2\right\rfloor=\left\lfloor n\left(k_{1}+k_{2}\right) / 2\right\rfloor . \tag{5.1}
\end{equation*}
$$

This takes care of the case $m=\left\lfloor n\left(k_{1}+k_{2}\right) / 2\right\rfloor$.
For any $\left\lfloor n k_{1} / 2\right\rfloor+2 \leq m<\left\lfloor n\left(k_{1}+k_{2}\right) / 2\right\rfloor$, taking $m_{1}=\left\lfloor n k_{1} / 2\right\rfloor$, a simple computation shows that the corresponding m_{2} falls into the right range, that is, $2 \leq m_{2}<\left\lfloor n k_{2} / 2\right\rfloor$.

For any $4 \leq m<\left\lfloor n k_{1} / 2\right\rfloor+2$, we may choose m_{2} to be 2 and set $m_{1}=m-2$. It can be checked that $2 \leq m_{1}<\left\lfloor n k_{1} / 2\right\rfloor$.

We now assume that $4 \leq m \leq\left\lfloor n k_{1} / 2\right\rfloor+\left\lfloor n k_{2} / 2\right\rfloor$ and $m=m_{1}+m_{2}$, where $2 \leq m_{1} \leq\left\lfloor n k_{1} / 2\right\rfloor$ and $2 \leq m_{2} \leq\left\lfloor n k_{2} / 2\right\rfloor$. By the assumptions for $\left[\begin{array}{c}n+k_{1} \\ n\end{array}\right]$ and $\left[\begin{array}{c}n+k_{2} \\ n\end{array}\right]$, we see that there exists a semi-invariant I of a binary n-form of degree k_{1} and weight m_{1} and a semi-invariant J of a binary n-form of degree k_{2} and weight m_{2}. Consequently, IJ is a semi-invariant of a binary n-form of degree $k_{1}+k_{2}$ and weight m.

We now turn to the remaining cases $m=2$ and $m=3$. Since $k_{1}, k_{2}, n \geq 2$ and at least one of k_{1}, k_{2} and n is greater than two, it is evident that at least one of $n k_{1} / 2$ and $n k_{2} / 2$ is greater than or equal to three. Let us assume that $n k_{1} / 2 \geq 3$. By the assumption for $\left[\begin{array}{c}n+k_{1} \\ n\end{array}\right]$, there is a semi-invariant of degree k_{1} and weight m_{1} for any $2 \leq m_{1} \leq n k_{1} / 2$. For $m_{1}=2$, suppose that I is a semi-invariant of degree k_{1} and weight two. For $m_{1}=3$, suppose that J is a semi-invariant of degree k_{1} and weight three. Clearly, $a_{0}^{k_{2}}$ is a semiinvariant of degree k_{2} and weight zero. It follows that $a_{0}^{k_{2}} I$ is a semi-invariant of degree $k_{1}+k_{2}$ and weight two and $a_{0}^{k_{2}} J$ is a semi-invariant of degree $k_{1}+k_{2}$ and weight three. This completes the proof.

Acknowledgments. We wish to thank the referee for invaluable comments. This work was done under the auspices of the National Science Foundation of China.

References

[1] G.E. Andrews, The Theory of Partitions, Cambridge University Press, Cambridge, 1998.
[2] A. Cayley, A second memoir upon quantics, Philos. Trans. Roy. Soc. London 146 (1856), 101-126.
[3] W.Y.C. Chen and I.D.D. Jia, Semi-invariants of binary forms pertaining to a unimodality theorem of Reiner and Stanton, Internat. J. Math., to appear.
[4] M. Christandl, A.W. Harrow and G. Mitchison, Nonzero Kronecker coefficients and what they tell us about spectra, Comm. Math. Phys. 270 (2007), 575-585.
[5] F.D. Grosshans, The work of Gian-Carlo Rota on invariant theory, Algebra Universalis 49 (2003), 213-258.
[6] D. Hilbert, Theory of Algebraic Invariants, Cambridge University Press, Cambridge, 1993. Translated from the German and with a preface by Reinhard C. Laubenbacher. Edited and with an introduction by Bernd Sturmfels.
[7] K.M. O'Hara, Unimodality of Gaussian coefficients: a constructive proof, J. Combin. Theory Ser. A 53 (1990), 29-52.
[8] I. Pak and G. Panova, Strict unimodality of q-binomial coefficients, C. R. Math. Acad. Sci. Paris 351 (2013), 415-418.
[9] I. Pak and G. Panova, Strict unimodality of q-binomial coefficients (new version), arXiv:1306.5085.
[10] I. Pak and G. Panova, Unimodality via Kronecker products, J. Algebraic Combin. 40 (2014), 1103-1120.
[11] R.A. Proctor, Solution of two difficult combinatorial problems with linear algebra, Amer. Math. Monthly 89 (1982), 721-734.
[12] R.P. Stanley, Weyl groups, the hard Lefschetz theorem, and the Sperner property, SIAM J. Algebraic Discrete Methods 1 (1980), 168-184.
[13] R.P. Stanley, Enumerative Combinatorics, Vol. I, Second Edition, Cambridge University Press, Cambridge, 2012.
[14] J.J. Sylvester, Proof of the hitherto undemonstrated Fundamental Theorem of Invariants, Philos. Mag. 5 (1878), 178-188. Reprinted in: The Collected Mathematical Papers of James Joseph Sylvester, Vol. III, Cambridge University Press, Cambridge, 1909, pp. 117-126.
[15] D.E. White, Monotonicity and unimodality of the pattern inventory, Adv. in Math. 38 (1980), 101-108.
[16] D. Zeilberger, Kathy O'Hara's constructive proof of the unimodality of the Gaussian polynomials, Amer. Math. Monthly 96 (1989), 590-602.

