
Ann. Comb.

23 (2019), no. 3-4, 613-657.

Finding Modular Functions for Ramanujan-Type

Identities

William Y.C. Chen1, Julia Q.D. Du2 and Jack C.D. Zhao3

1,2Center for Applied Mathematics
Tianjin University

Tianjin 300072, P. R. China

3Center for Combinatorics
Nankai University

Tianjin 300071, P. R. China

Emails: 1chenyc@tju.edu.cn, 2qddu@tju.edu.cn, 3cdzhao@mail.nankai.edu.cn

Dedicated to Professor George E. Andrews on the occasion of his 80th birthday

Abstract. This paper is concerned with a class of partition functions a(n) introduced by Radu
and defined in terms of eta-quotients. By utilizing the transformation laws of Newman, Schoeneberg
and Robins, and Radu’s algorithms, we present an algorithm to find Ramanujan-type identities for
a(mn+ t). While this algorithm is not guaranteed to succeed, it applies to many cases. For example,
we deduce a witness identity for p(11n + 6) with integer coefficients. Our algorithm also leads to
Ramanujan-type identities for the overpartition functions p(5n + 2) and p(5n + 3) and Andrews–
Paule’s broken 2-diamond partition functions 42(25n+14) and 42(25n+24). It can also be extended
to derive Ramanujan-type identities on a more general class of partition functions. For example, it
yields the Ramanujan-type identities on Andrews’ singular overpartition functions Q3,1(9n + 3) and

Q3,1(9n+ 6) due to Shen, the 2-dissection formulas of Ramanujan and the 8-dissection formulas due
to Hirschhorn.
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1. Introduction

Throughout this paper, we follow the standard q-series notation in [16]:

(a; q)∞ =

∞∏
n=0

(1− aqn) and (a1, a2, . . . , am; q)∞ =

m∏
j=1

(aj ; q)∞,

where |q| < 1. In the study of congruence properties and identities on partition functions, Radu [35–37]
defined a class of partition functions a(n) by

∞∑
n=0

a(n)qn =
∏
δ|M

(qδ; qδ)rδ∞, (1.1)

where M is a positive integer and rδ are integers. Many partition functions fall into the framework of
the above definition of a(n), such as the partition function p(n), the overpartition function p(n) [11],
the Ramanujan τ -function [18,19,39], the k-colored partition functions, the t-core partition functions,
the 2-colored Frobenius partition functions and the broken k-diamond partition functions ∆k(n) [4].

In this paper, we aim to present an algorithm to compute the generating function

∞∑
n=0

a(mn+ t)qn, (1.2)

for fixed m > 0 and 0 ≤ t ≤ m − 1 by finding suitable modular functions for Γ1(N). When M = 1
and r1 = −1, a(n) specializes to the partition function p(n). Kolberg [26] proved that for a positive
integer m prime to 6, and 0 ≤ t ≤ m− 1,

∞∑
n=0

p(mn+ t)qmn+t = (−1)(m−1)t
(qm

2

; qm
2

)∞

(qm; qm)m+1
∞

detMt, (1.3)

where Mt = (g−t−i+j)(m−1)×(m−1),

gt =
∑

1
2n(3n+1)≡t(mod m)

(−1)nq
1
2n(3n+1),

and gt = gs when t ≡ s (mod m). In view of (1.3), he derived some identities on p(n), for example,

∞∑
n=0

p(5n)qn =
(q5; q5)∞

(q; q)2∞(q, q4; q5)8∞
− 3q

(q5; q5)6∞(q, q4; q5)2∞
(q; q)7∞

, (1.4)

and ( ∞∑
n=0

p(5n)qn

)( ∞∑
n=0

p(5n+ 3)qn

)
= 3

(q5; q5)4∞
(q; q)6∞

+ 25q
(q5; q5)10∞
(q; q)12∞

.

Atkin and Swinnerton-Dyer [5] have shown that gt can always be expressed by certain infinite products
for m > 3. Then the left hand side of (1.3) can be expressed in terms of certain infinite products.
Kolberg pointed out that when m > 5, this becomes much more complicated. For m = 11, 13, Bilgici
and Ekin [7, 8] used the method of Kolberg to compute the generating function

∞∑
n=0

p(mn+ t)qmn+t
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for all 0 ≤ t ≤ m− 1.

Based on the ideas of Rademacher [33], Newman [28, 29] and Kolberg [26], Radu [37] developed
an algorithm to verify the congruences

a(mn+ t) ≡ 0 (mod u), (1.5)

for any given m, t and u, and for all n ≥ 0, where a(n) is defined in (1.1). Moreover, Radu [35] devel-
oped an algorithm, called the Ramanujan–Kolberg algorithm, to derive identities on the generating
functions of a(mn+ t) using modular functions for Γ0(N). A description of the Ramanujan–Kolberg
algorithm can be found in Paule and Radu [32]. Smoot [46] developed a Mathematica package RaduRK

to implement Radu’s algorithm. It should be mentioned that Eichhorn [13] extended the technique
in [14,15] to partition functions a(n) defined by

∞∑
n=0

a(n)qn =

L∏
j=1

(qj ; qj)ej∞, (1.6)

where L is a positive integer and ej are integers, and reduced the verification of the congruences (1.5)
to a finite number of cases. It is easy to see that the defining relations (1.1) and (1.6) are equivalent
to each other. In this paper, we shall adopt the form of (1.1) in accordance with the notation of
eta-quotients.

Recall that the Dedekind eta-function η(τ) is defined by

η(τ) = q
1
24

∞∏
n=1

(1− qn),

where q = e2πiτ , τ ∈ H = {τ ∈ C : Im(τ) > 0}. An eta-quotient is a function of the form∏
δ|M

ηrδ(δτ),

where M ≥ 1 and each rδ is an integer.

The Ramanujan–Kolberg algorithm leads to verifications of some identities on p(n) due to Ra-
manujan [38], Zuckerman [50] and Kolberg [26], for example,

∞∑
n=0

p(5n+ 4)qn = 5
(q5; q5)5∞
(q; q)6∞

,

see [38, eq. (18)]. It should be noted that there are some Ramanujan-type identities that are not
covered by the Ramanujan–Kolberg algorithm, such as the identity (1.4).

In this paper, we develop an algorithm to derive Ramanujan-type identities for a(mn + t) for
m > 0 and 0 ≤ t ≤ m − 1, which is essentially a modified version of Radu’s algorithm. We first find
a necessary and sufficient condition for a product of a generalized eta-quotient and the generating
function (1.2) to be a modular function for Γ1(N) up to a power of q. Then we try to express this
modular function as a linear combination of generalized eta-quotients over Q.

For example, our algorithm leads to a verification of (1.4) for p(5n). Moreover, we obtain
Ramanujan-type identities for the overpartition functions p(5n + 2) and p(5n + 3) and the broken
2-diamond partition functions ∆2(25n+ 14) and ∆2(25n+ 24). We also obtain the following witness
identity with integer coefficients for p(11n+ 6).
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Theorem 1.1. We have

z0

∞∑
n=0

p(11n+ 6)qn

= 11z10 + 121z8e+ 330z9 − 484z7e− 990z8 + 484z6e+ 792z7

− 484z5e+ 44z6 + 1089z4e− 132z5 − 1452z3e− 451z4

+ 968z2e+ 748z3 − 242ze− 429z2 + 77z + 11, (1.7)

where

z0 =
(q; q)24∞

q20(q11; q11)23∞(q, q10; q11)28∞(q2, q9; q11)16∞(q3, q8; q11)12∞(q4, q7; q11)4∞
,

z =
(q; q)∞

q2(q11; q11)∞(q, q10; q11)3∞(q2, q9; q11)2∞
, (1.8)

e =
(q; q)3∞

q3(q11; q11)3∞(q, q10; q11)5∞(q2, q9; q11)5∞(q3, q8; q11)4∞(q4, q7; q11)∞
. (1.9)

Bilgici and Ekin [8] deduced a witness identity for p(11n + 6) with integer coefficients using the
method of Kolberg. Radu [35] obtained a witness identity for p(11n + 6) by using the Ramanujan–
Kolberg algorithm. Hemmecke [20] generalized Radu’s algorithm and derived a witness identity for
p(11n+6). Paule and Radu [31] found a polynomial relation on the generating function of p(11n+6),
which can also be viewed as a witness identity. Moreover, Paule and Radu [30] found a witness identity
for p(11n+ 6) in terms of eta-quotients and the U2-operator acting on eta-quotients.

Our algorithm can be extended to a more general class of partition functions b(n) defined by

∞∑
n=0

b(n)qn =
∏
δ|M

(qδ; qδ)rδ∞
∏
δ|M

0<g<δ

(qg, qδ−g; qδ)
rδ,g
∞ , (1.10)

where M is a positive integer and rδ, rδ,g are integers. Notice that (1.10) is a generalized eta-quotient
up to a power of q.

Recall that for a positive integer δ and a residue class g (mod δ), the generalized Dedekind eta-
function ηδ,g(τ) is defined by

ηδ,g(τ) = q
δ
2P2( gδ )

∏
n>0

n≡g(modδ)

(1− qn)
∏
n>0

n≡−g(modδ)

(1− qn), (1.11)

where

P2(t) = {t}2 − {t}+
1

6

is the second Bernoulli function and {t} is the fractional part of t, see, for example, [41,43]. Note that

ηδ,0(τ) = η2(δτ) and ηδ, δ2
(τ) =

η2( δ2τ)

η2(δτ)
. (1.12)
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A generalized eta-quotient is a function of the form∏
δ|M

0≤g<δ

η
rδ,g
δ,g (τ), (1.13)

where M ≥ 1 and

rδ,g ∈

{
1
2Z, if g = 0 or g = δ

2 ,

Z, otherwise,

see, for example, Robins [41]. In view of (1.12), when g = 0 or g = δ
2 , if rδ,g ∈ 1

2Z, then the powers
of the eta-functions in (1.13) are integers.

For partition functions b(n) as defined in (1.10), our algorithm can be extended to derive Ramanujan-
type identities on b(mn+ t) for m > 0 and 0 ≤ t ≤ m− 1, such as the Ramanujan-type identities on
Andrews’ singular overpartition functions Q3,1(9n+3) and Q3,1(9n+6) due to Shen [45]. The extend-
ed algorithm can also be employed to derive dissection formulas, such as the 2-dissection formulas of
Ramanujan, first proved by Andrews [2], and the 8-dissection formulas due to Hirschhorn [22].

2. Finding Modular Functions for Γ1(N)

For the partition functions a(n) as defined by (1.1), namely,

∞∑
n=0

a(n)qn =
∏
δ|M

(qδ; qδ)rδ∞,

where M is a positive integer and rδ are integers, Radu [37] defined

gm,t(τ) = q
t−`
m

∞∑
n=0

a(mn+ t)qn, (2.1)

where

` = − 1

24

∑
δ|M

δrδ.

Let φ(τ) be a generalized eta-quotient, and let F (τ) = φ(τ)gm,t(τ). The objective of this section
is to give a criterion for F (τ) to be a modular function for Γ1(N). We find that the transformation
formula for gm,t(τ) under Γ1(N)∗ is analogous to the transformation formula of Radu [37, Lemma 2.14]
with respect to Γ0(N)∗. Then we utilize the transformation laws of Newman [29] and Robins [41]
to obtain the transformation formula of F (τ). With the aid of the Laurent expansions of φ(τ) and
gm,t(τ), we obtain a necessary and sufficient condition for F (τ) to be a modular function for Γ1(N).

We first state the conditions on N . In fact, we make the following changes on the conditions on
N given by Definition 34 and Definition 35 in [35]: Change the condition δ|mN for every δ|M with
rδ 6= 0 to M |N , and add the following condition 7. For completeness, we list all the conditions on N .
Let κ = gcd(m2 − 1, 24). Assume that N satisfies the following conditions:

1. M |N .

5



2. p|N for any prime p|m.

3. κN
∑
δ|M

rδ ≡ 0 (mod 8).

4. κmN2
∑
δ|M

rδ
δ ≡ 0 (mod 24).

5. 24m
gcd(κα(t),24m) |N , where α(t) = −

∑
δ|M δrδ − 24t.

6. Let
∏
δ|M δ|rδ| = 2zj, where z ∈ N and j is odd. If 2|m, then κN ≡ 0 (mod 4) and Nz ≡ 0

(mod 8), or z ≡ 0 (mod 2) and N(j − 1) ≡ 0 (mod 8).

7. Let Sn = {j2 (mod n) : j ∈ Zn, gcd(j, n) = 1, j ≡ 1 (mod N)}. For any s ∈ S24mM ,

s− 1

24

∑
δ|M

δrδ + ts ≡ t (mod m).

Note that there always exists N satisfying the above conditions, because N = 24mM would make a

feasible choice. From now on, we denote by γ the matrix
(
a b
c d

)
.

Theorem 2.1. For a given partition function a(n) as defined by (1.1), and for given integers m and
t, suppose that N is a positive integer satisfying the conditions 1–7. Let

F (τ) = φ(τ) gm,t(τ),

where

φ(τ) =
∏
δ|N

ηaδ(δτ)
∏
δ|N

0<g≤bδ/2c

η
aδ,g
δ,g (τ), (2.2)

and aδ and aδ,g are integers. Then F (τ) is a modular function with respect to Γ1(N) if and only if aδ
and aδ,g satisfy the following conditions:

(1)
∑
δ|N

aδ +
∑
δ|M

rδ = 0,

(2) N
∑
δ|N

aδ
δ + 2N

∑
δ|N

0<g≤bδ/2c

aδ,g
δ +Nm

∑
δ|M

rδ
δ ≡ 0 (mod 24),

(3)
∑
δ|N

δaδ + 12
∑
δ|N

0<g≤bδ/2c

δP2

(
g
δ

)
aδ,g +m

∑
δ|M

δrδ + (m2−1)α(t)
m ≡ 0 (mod 24),

(4) For any integer 0 < a < 12N with gcd (a, 6) = 1 and a ≡ 1 (mod N),

∏
δ|N

(
δ

a

)|aδ|∏
δ|M

(
mδ

a

)|rδ|
e

∑
δ|N

bδ/2c∑
g=1

πi
(
g
δ−

1
2

)
(a−1)aδ,g

= 1.
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For example, consider the overpartition function p(n). Recall that an overpartition of a positive
integer n is a partition of n where the first occurrence of each distinct part may be overlined, and the
number of overpartitions of n is denoted by p(n) for n ≥ 1 and p(0) = 1. As noted by Corteel and
Lovejoy [11], the generating function of p(n) is given by

∞∑
n=0

p(n)qn =
(q2; q2)∞
(q; q)2∞

.

For the overpartition function p(5n + 2), we see that N = 10 satisfies the conditions 1–7. Next we
proceed to find a generalized eta-quotient φ(τ) such that φ(τ)g5,2(τ) is a modular function for Γ1(10).
By the above theorem, the function∏

δ|10

ηaδ(δτ)
∏
δ|10

0<g≤bδ/2c

η
aδ,g
δ,g (τ) g5,2(τ)

is a modular function for Γ1(10) if and only if aδ and aδ,g fulfill the following conditions:

a1 + a2 + a5 + a10 − 1 = 0,

10a1 + 5a2 + 10a2,1 + 2a5 + 4a5,1 + 4a5,2 + a10 + 2a10,1

+2a10,2 + 2a10,3 + 2a10,4 + 2a10,5 − 3 ≡ 0 (mod 24),

a1 + 2a2 − 2a2,1 + 5a5 +
2a5,1
5 − 22a5,2

5 + 10a10 +
46a10,1

5

+
4a10,2

5 − 26a10,3
5 − 44a10,4

5 − 10a10,5 + 48
5 ≡ 0 (mod 24),

(
10
a

) ∏
δ|10

(
δ
a

)|aδ|
e

∑
δ|10

bδ/2c∑
g=1

πi
(
g
δ−

1
2

)
(a−1)aδ,g

= 1,

(2.3)

for any 0 < a < 120 with gcd(a, 6) = 1 and a ≡ 1 (mod 10). We find that

(a1, a2, a2,1, a5, a5,1, a5,2, a10, a10,1,a10,2, a10,3, a10,4, a10,5)

= (0, 0, 0, 0, 0, 0, 1, 0, 0, 0,−8, 9)

is an integer solution of (2.3). Let

φ(τ) =
η(10τ)η910,5(τ)

η810,4(τ)
.

Since

g5,2(τ) = q
2
5

∞∑
n=0

p(5n+ 2)qn,

we find that

F (τ) = q
2
5φ(τ)

∞∑
n=0

p(5n+ 2)qn (2.4)

is a modular function with respect to Γ1(10).
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Let

Γ1(N)∗ =

{(
a b

c d

)
∈ Γ1(N) : gcd (a, 6) = 1, ac > 0

}
.

The following lemma asserts that the invariance of the function f(τ) under Γ1(N) is equivalent to the
invariance under Γ1(N)∗.

Lemma 2.2. Let k be an integer, N be a positive integer and f : H→ C be a function such that

f(γτ) = (cτ + d)kf(τ) (2.5)

for any γ ∈ Γ1(N)∗. Then f is weight-k invariant under Γ1(N).

Proof. Let

A =

{(
a b

c d

)
∈ Γ1(N) : gcd(a, 6) = 1

}
.

By Lemma 3 of Newman [29], we know that Γ1(N) is generated by A. Hence it suffices to show that

f(γτ) = (cτ + d)kf(τ)

for any γ ∈ A. By the condition of Lemma 2.2, we may restrict our attention only to two cases. (1)
γ ∈ A, a > 0 and c ≤ 0. (2) γ ∈ A, a < 0 and c ≥ 0. Here we only consider the first case, and the
second case can be justified in the same manner. For the first case, since a > 0 and c ≤ 0, there exists
a positive integer x such that ax+ c

N > 0. Let

γ1 =

(
1 0

Nx 1

)
and γ2 =

(
a b

Nax+ c Nbx+ d

)
.

Then γ2 = γ1γ and γ1 ∈ Γ1(N)∗. Therefore,

f(γ2τ) = f(γ1(γτ)) = (Nx(γτ) + 1)
k
f(γτ). (2.6)

Since γ ∈ A, we have gcd(a, 6) = 1, and so γ2 ∈ Γ1(N)∗. Applying (2.5) with γ2 ∈ Γ1(N)∗, we get

f(γ2τ) = ((Nax+ c)τ + (Nbx+ d))
k
f(τ). (2.7)

Combining (2.6) and (2.7), we deduce that

f(γτ) = (cτ + d)
k
f(τ),

as claimed.

The following transformation formula for gm,t(τ) under Γ1(N)∗ is analogous to the transformation
formula of Radu [37, Lemma 2.14] with respect to Γ0(N)∗. The proof parallels that of Radu, and
hence it is omitted.

Lemma 2.3. For a given partition function a(n) as defined by (1.1), and for given integers m and t,
let N be a positive integer satisfying the above conditions 1–7. For any γ ∈ Γ1(N)∗, we have

gm,t(γτ) = (cτ + d)

1
2

∑
δ|M

rδ

eπiζ(γ)
∏
δ|M

L(mδc, a)|rδ| gm,t(τ),
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where

L(c, a) =


(
c
a

)
, if a > 0,(

−c
−a

)
, otherwise,( )

is the Jacobi symbol,

ζ(γ) =
ab(m2 − 1)α(t)

12m
+
abm

12

∑
δ|M

δrδ −
acm

12

∑
δ|M

rδ
δ

+
sgn(c) (a− 1)

4

∑
δ|M

rδ,

and α(t) is defined as in the condition 5.

Next we derive a transformation formula for F (τ) under Γ1(N)∗. Recall the notation of Schoeneberg
[43]:

η
(s)
g,h(τ) = α0(h)eπiP2(

g
δ )τ

∏
m>0

m≡g(modδ)

(1− ζhδ e
2πiτ
δ m)

∏
m>0

m≡−g(modδ)

(1− ζ−hδ e
2πiτ
δ m), (2.8)

where ζδ is a primitive δ-th root of unity,

α0(h) =

{
(1− ζ−hδ )eπiP1(hδ ), if g ≡ 0 (mod δ) and h 6≡ 0 (mod δ),

1, otherwise,

the first Bernoulli function P1(x) is given by

P1(x) =

{
x− bxc − 1

2 , if x 6∈ Z,

0, otherwise,

and bxc is the greatest integer less than or equal to x. Since

ηδ,g(τ) = q
δ
2P2( gδ )

∏
n>0

n≡g(modδ)

(1− qn)
∏
n>0

n≡−g(modδ)

(1− qn),

we have

ηδ,g(τ) = η
(s)
g,0(δτ). (2.9)

Lemma 2.4. For a given partition function a(n) as defined by (1.1), and for given integers m and t,
let N be a positive integer satisfying the conditions 1–7, and

F (τ) =
∏
δ|N

ηaδ(δτ)
∏
δ|N

0<g≤bδ/2c

η
aδ,g
δ,g (τ) gm,t(τ), (2.10)

where aδ and aδ,g are integers. Then for any γ ∈ Γ1(N)∗,

F (γτ) =
∏
δ|N

L
( c
δ
, a
)aδ ∏

δ|M

L(mδc, a)|rδ|eπi(ν(γ)+ξ(γ))

× (cτ + d)

1
2

( ∑
δ|N

aδ+
∑
δ|M

rδ

)
F (τ), (2.11)
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where

ν(γ) =
∑
δ|N

0<g≤bδ/2c

(
g

δ
− 1

2

)
(a− 1)aδ,g (2.12)

and

ξ(γ) =
a− 1

4
sgn(c)

(∑
δ|N

aδ +
∑
δ|M

rδ

)

− ac
(∑
δ|N

aδ
12δ

+
∑
δ|N

0<g≤bδ/2c

aδ,g
6δ

+
∑
δ|M

mrδ
12δ

)

+ ab

(∑
δ|N

δaδ
12

+
∑
δ|N

0<g≤bδ/2c

δP2

(g
δ

)
aδ,g +

∑
δ|M

mδrδ
12

+
(m2 − 1)α(t)

12m

)
. (2.13)

Proof. For any γ =
(
a b
c d

)
∈ Γ1(N)∗, we have

F (γτ) =
∏
δ|N

ηaδ(δγτ)
∏
δ|N

0<g≤bδ/2c

η
aδ,g
δ,g (γτ) gm,t(γτ). (2.14)

For any δ|N , let γ′δ =
(
a δb
c
δ d

)
. Since γ ∈ Γ1(N)∗, we have N |c and so δ|c for any δ|N . It follows that

γ′δ ∈ Γ. Thus (2.14) can be written as

F (γτ) =
∏
δ|N

ηaδ(γ′δ(δτ))
∏
δ|N

0<g≤bδ/2c

η
aδ,g
δ,g (γτ) gm,t(γτ). (2.15)

The transformation formula of Newman [29, Lemma 2] states that for any γ ∈ Γ with a > 0, c > 0
and gcd(a, 6) = 1,

η(γτ) =
( c
a

)
e−

aπi
12 (c−b−3)(−i(cτ + d))

1
2 η(τ).

Therefore, for any γ ∈ Γ with ac > 0 and gcd(a, 6) = 1, we have

η(γτ) = L(c, a) eπi(
a
12 (−c+b)+

a−1
4 sgn(c))(cτ + d)

1
2 η(τ). (2.16)

Since γ ∈ Γ1(N)∗, we see that gcd(a, 6) = 1 and ac > 0. Applying the transformation formula (2.16)
to each γ′δ, we deduce that∏

δ|N

ηaδ(γ′δ(δτ)) =
∏
δ|N

L
( c
δ
, a
)aδ

eπi(
a
12 (−

c
δ+δb)+

a−1
4 sgn(c))aδ(cτ + d)

aδ
2 ηaδ(δτ). (2.17)

Using the transformation formula of Robins [41, Theorem 2]:

ηδ,g(γτ) = eπi(δabP2( gδ )− ac6δ+(a−1)( gδ−
1
2 ))ηδ,g(τ),

10



we find that ∏
δ|N

0<g≤bδ/2c

η
aδ,g
δ,g (γτ) =

∏
δ|N

0<g≤bδ/2c

eπi(δabP2( gδ )− ac6δ+(a−1)( gδ−
1
2 ))aδ,gη

aδ,g
δ,g (τ). (2.18)

Substituting the transformation formulas in (2.17), (2.18) and Lemma 2.3 into (2.15), we reach the
transformation formula (2.11).

To prove Theorem 2.1, we need the Laurent expansions of gm,t(γτ) and φ(γτ) for γ ∈ Γ. Let us
recall the two maps p : Γ × Zm → Q and p : Γ → Q defined by Radu [37], namely, for γ ∈ Γ and
λ ∈ Zm,

p(γ, λ) =
1

24

∑
δ|M

gcd2(δ(a+ κλc),mc)

δm
rδ (2.19)

and for γ ∈ Γ,

p(γ) = min{p(γ, λ) : λ = 0, 1, . . . ,m− 1}. (2.20)

The parabolic subgroup of Γ is defined by

Γ∞ =

{
±
(

1 b

0 1

)
: b ∈ Z

}
.

For any γ ∈ Γ, the (Γ1(N),Γ∞)-double coset of γ is given by

Γ1(N)γΓ∞ = {γNγγ∞ : γN ∈ Γ1(N), γ∞ ∈ Γ∞}.

Assume that Γ has the following disjoint decomposition

Γ =

ε⋃
i=1

Γ1(N)γiΓ∞, (2.21)

where R = {γ1, γ2, . . . , γε} ⊆ Γ. Denote the set of (Γ1(N),Γ∞)-double cosets in Γ by Γ1(N)\Γ/Γ∞.
Then (2.21) can be written as

Γ1(N)\Γ/Γ∞ = {Γ1(N)γΓ∞ : γ ∈ R}.

We say that R is a complete set of representatives of the double cosets Γ1(N)\Γ/Γ∞.

The following lemma gives a Laurent expansion of gm,t(γτ), and the proof is similar to that of
Lemma 3.4 in Radu [37], and hence it is omitted.

Lemma 2.5. For a given partition function a(n) as defined by (1.1), and for given integers m and
t, let N be a positive integer satisfying the conditions 1–7, and R = {γ1, γ2, . . . , γε} be a complete set
of representatives of the double cosets Γ1(N)\Γ/Γ∞. For any γ ∈ Γ, assume that γ ∈ Γ1(N)γiΓ∞ for

some 1 ≤ i ≤ ε. Then there exists an integer w and a Taylor series h(q) in powers of q
1
w , such that

gm,t(γτ) = (cτ + d)

1
2

∑
δ|M

rδ

qp(γi)h(q).

The following lemma gives a Laurent expansion of φ(γτ) for any γ ∈ Γ.

11



Lemma 2.6. Let

φ(τ) =
∏
δ|N

ηaδ(δτ)
∏
δ|N

0<g≤bδ/2c

η
aδ,g
δ,g (τ),

where aδ and aδ,g are integers. For any γ ∈ Γ, there exists a positive integer w and a Taylor series

h∗(q) in powers of q
1
w such that

φ(γτ) = (cτ + d)

1
2

∑
δ|N

aδ

qp
∗(γ)h∗(q),

where

p∗(γ) =
1

24

∑
δ|N

gcd2 (δ, c)

δ
aδ +

1

2

∑
δ|N

0<g≤bδ/2c

gcd2 (δ, c)

δ
P2

(
ag

gcd (δ, c)

)
aδ,g.

Furthermore, for any γ1 ∈ Γ and γ2 ∈ Γ1(N)γ1Γ∞, we have p∗(γ1) = p∗(γ2).

Proof. For any γ =
(
a b
c d

)
∈ Γ, we have

φ(γτ) =
∏
δ|N

ηaδ(δγτ)
∏
δ|N

0<g≤bδ/2c

η
aδ,g
δ,g (γτ).

It follows from (2.9) that

φ(γτ) =
∏
δ|N

ηaδ(δγτ)
∏
δ|N

0<g≤bδ/2c

η
(s)
g,0

aδ,g
(δγτ). (2.22)

Since gcd(a, c) = 1, for any δ|N , there exist integers xδ and yδ such that

δaxδ + cyδ = gcd(δa, c) = gcd(δ, c),

and hence (
δa δb

c d

)
=

(
δa

gcd(δ,c) − yδ
c

gcd(δ,c) xδ

)(
gcd(δ, c) δbxδ + dyδ

0 δ
gcd(δ,c)

)
. (2.23)

Set

γδ =

(
δa

gcd(δ,c) − yδ
c

gcd(δ,c) xδ

)
and Tδ =

(
gcd(δ, c) δbxδ + dyδ

0 δ
gcd(δ,c)

)
.

Note that γδ ∈ Γ. Combining (2.22) and (2.23), we deduce that

φ(γτ) =
∏
δ|N

ηaδ(γδTδτ)
∏
δ|N

0<g≤bδ/2c

η
(s)
g,0

aδ,g
(γδTδτ). (2.24)

By the transformation law for η(τ) under Γ [34, p. 145], namely, there exists a map ε′ : Γ → C such
that for any γ ∈ Γ,

η(γτ) = ε′(γ)(cτ + d)
1
2 η(τ),
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and the transformation formula for η
(s)
g,h(τ) under Γ in [43, p. 199 (30)], namely, when 0 < g < δ, there

exists a map ε1 : Γ→ C such that for any γ ∈ Γ,

η
(s)
g,h(γτ) = ε1(γ) η

(s)
g′,h′(τ),

where g′ = ag + ch, h′ = bg + dh, it follows from (2.24) that there is a map ε : Γ → C such that for
any γ ∈ Γ,

φ(γτ) = ε(γ)(cτ + d)

1
2

∑
δ|N

aδ∏
δ|N

ηaδ(Tδτ)
∏
δ|N

0<g≤bδ/2c

η
(s)

δa
gcd(δ,c)

g,−yδg

aδ,g
(Tδτ). (2.25)

Substituting the q-expansions of the eta-function and the generalized eta-function into (2.25), we see

that there exists a positive integer w and a Taylor series h∗(q) in powers of q
1
w such that

φ(γτ) = (cτ + d)

1
2

∑
δ|N

aδ

qp
∗(γ)h∗(q).

Next we aim to show that p∗(γ1) = p∗(γ2) for any γ1 ∈ Γ and γ2 ∈ Γ1(N)γ1Γ∞. Under the
assumption that γ2 ∈ Γ1(N)γ1Γ∞, there exist γ3 ∈ Γ1(N) and γ4 ∈ Γ∞ such that

γ2 = γ3γ1γ4. (2.26)

Write

γ1 =

(
a1 b1
c1 d1

)
, γ2 =

(
a2 b2
c2 d2

)
, γ3 =

(
a3 b3
c3 d3

)
, γ4 =

(
±1 b4
0 ± 1

)
.

Owing to (2.26), we find that

a2 = ±(a1a3 + b3c1) (2.27)

and

c2 = ±(a1c3 + c1d3). (2.28)

For any δ|N , since γ3 ∈ Γ1(N), we see that a3 ≡ 1 (mod δ), δ|c3 and gcd(δ, d3) = 1. Using (2.27), it
can be verified that

a2g ≡ ±a1g (mod gcd (δ, c1)). (2.29)

In view of (2.28), we obtain that

gcd(δ, c2) = gcd(δ, c1). (2.30)

Combining (2.29) and (2.30), we arrive at

P2

(
a1g

gcd(δ, c1)

)
= P2

(
a2g

gcd(δ, c2)

)
, (2.31)

here we have used the fact that P2(−α) = P2(α) for any α ∈ R. Combining (2.30) and (2.31), we
conclude that p∗(γ1) = p∗(γ2), as claimed.

We are now ready to complete the proof of Theorem 2.1.
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Proof of Theorem 2.1. Assume that

F (τ) =
∏
δ|N

ηaδ(δτ)
∏
δ|N

0<g≤bδ/2c

η
aδ,g
δ,g (τ) gm,t(τ) (2.32)

is a modular function with respect to Γ1(N), where aδ and aδ,g are integers. We proceed to show that
the conditions (1)–(4) are fulfilled by the integers aδ and aδ,g.

Since Γ1(N)∗ ⊆ Γ1(N) and F (τ) is a modular function for Γ1(N), for any γ ∈ Γ1(N)∗, we have

F (γτ) = F (τ). (2.33)

To compute F (γτ), we need the transformation formula for F (τ) under Γ1(N)∗ as given in Lemma
2.4, that is, for any γ ∈ Γ1(N)∗,

F (γτ) =
∏
δ|N

L
( c
δ
, a
)aδ ∏

δ|M

L(mδc, a)|rδ|eπi(ν(γ)+ξ(γ))

× (cτ + d)

1
2

( ∑
δ|N

aδ+
∑
δ|M

rδ

)
F (τ), (2.34)

where ν(γ) and ξ(γ) are defined in (2.12) and (2.13). Combining (2.33) and (2.34), we see that∑
δ|N

aδ +
∑
δ|M

rδ = 0,

thus (1) is satisfied. Consequently, ξ(γ) reduces to

− ac
(∑
δ|N

aδ
12δ

+
∑
δ|N

0<g≤bδ/2c

aδ,g
6δ

+
∑
δ|M

mrδ
12δ

)

+ ab

(∑
δ|N

δaδ
12

+
∑
δ|N

0<g≤bδ/2c

δP2

(g
δ

)
aδ,g +

∑
δ|M

mδrδ
12

+
(m2 − 1)α(t)

12m

)
.

To prove (2), consider the matrix γ =
(

1 0
N 1

)
∈ Γ1(N)∗. In this case, (2.34) becomes

F (γτ) = e
−πiN

( ∑
δ|N

aδ
12δ+

∑
δ|N

bδ/2c∑
g=1

aδ,g
6δ +

∑
δ|M

mrδ
12δ

)
F (τ). (2.35)

Hence (2) follows from (2.33) and (2.35). Setting γ =
(

1 1
N N+1

)
∈ Γ1(N)∗, (2.34) becomes

F (γτ) = e
πi

( ∑
δ|N

δaδ
12 +

∑
δ|N

bδ/2c∑
g=1

δP2( gδ )aδ,g+
∑
δ|M

mδrδ
12 +

(m2−1)α(t)
12m

)
F (τ),

which, together with (2.33), implies (3). Using the conditions (1)–(3), it can be checked that ξ(γ) ≡ 0
(mod 2) for any γ ∈ Γ1(N)∗. It follows that

eπiξ(γ) = 1,

and so (2.34) reduces to

F (γτ) =
∏
δ|N

L
( c
δ
, a
)aδ ∏

δ|M

L(mδc, a)|rδ|eπiν(γ)(cτ + d)

1
2

( ∑
δ|N

aδ+
∑
δ|M

rδ

)
F (τ). (2.36)
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By the definition of L, we find that for any δ|N ,

L
( c
δ
, a
)

= L(δc, a) =

(
δ|c|
|a|

)
,

and for any δ|M ,

L(mδc, a) =

(
mδ|c|
|a|

)
.

Hence (2.36) is equivalent to

F (γτ) =
∏
δ|N

(
δ|c|
|a|

)|aδ| ∏
δ|M

(
mδ|c|
|a|

)|rδ|
eπiν(γ) (cτ + d)

1
2

( ∑
δ|N

aδ+
∑
δ|M

rδ

)
F (τ). (2.37)

In view of the condition (1), it is easily verified that

(cτ + d)

1
2

( ∑
δ|N

aδ+
∑
δ|M

rδ

)
= 1 (2.38)

and ∏
δ|N

(
|c|
|a|

)|aδ| ∏
δ|M

(
|c|
|a|

)|rδ|
= 1. (2.39)

Substituting (2.38) and (2.39) into (2.37) yields

F (γτ) =
∏
δ|N

(
δ

|a|

)|aδ| ∏
δ|M

(
mδ

|a|

)|rδ|
eπiν(γ) F (τ). (2.40)

Comparing (2.33) with (2.40), we deduce that

∏
δ|N

(
δ

|a|

)|aδ| ∏
δ|M

(
mδ

|a|

)|rδ|
eπiν(γ) = 1 (2.41)

for all integers a with gcd (a, 6) = 1 and a ≡ 1 (mod N). Invoking the interpretation of the Jacobi
symbol, we conclude that (2.41) holds for all integers 0 < a < 12N with gcd (a, 6) = 1 and a ≡ 1
(mod N). This confirms (4).

Conversely, assume that the integers aδ, aδ,g (δ|N, 0 < g ≤ bδ/2c) satisfy the conditions (1)–(4).
We proceed to show that

F (τ) =
∏
δ|N

ηaδ(δτ)
∏
δ|N

0<g≤bδ/2c

η
aδ,g
δ,g (τ) gm,t(τ)

is a modular function for Γ1(N). It is clear that F (τ) is holomorphic on H.

Based on the conditions (1)–(3), it follows from Lemma 2.4 that the transformation formula (2.40)
for F (τ) holds for any γ ∈ Γ1(N)∗. Given the condition (4), we see that (2.41) holds for all integers a
with gcd (a, 6) = 1 and a ≡ 1 (mod N). Combining (2.40) and (2.41), we find that for any γ ∈ Γ1(N)∗,

F (γτ) = F (τ).
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In view of Lemma 2.2, we conclude that F (γτ) = F (τ) for any γ ∈ Γ1(N).

It remains to show that for any γ ∈ Γ, F (γτ) has a Laurent expansion with a finite principal

part in powers of q
1
N . Let γ ∈ Γ and R = {γ1, γ2, . . . , γε} be a complete set of representatives of the

double cosets Γ1(N)\Γ/Γ∞. By the decomposition of Γ in (2.21), there exist an integer 1 ≤ i ≤ ε and
matrices γN ∈ Γ1(N), γ∞ ∈ Γ∞ such that γ = γNγiγ∞. By Lemma 2.5 and Lemma 2.6, there exist

a positive integer w and Taylor series h(q) and h∗(q) in powers of q
1
w such that

F (γτ) = (cτ + d)

1
2

( ∑
δ|N

aδ+
∑
δ|M

rδ

)
qp(γi)+p

∗(γi) h(q)h∗(q). (2.42)

In view of the condition (1), (2.42) reduces to

F (γτ) = qp(γi)+p
∗(γi) h(q)h∗(q), (2.43)

which implies that there exists a positive integer k such that F (γτ) has the Laurent expansion with

a finite principal part in powers of q
1
k . Since we have shown that F (τ) is invariant under Γ1(N), by

Lemma 1.14 in [48], we obtain that for any γ ∈ Γ, F (γτ) is invariant under γ−1Γ1(N)γ. Notice that(
1 N
0 1

)
∈ γ−1Γ1(N)γ. So F (γτ) has period N , namely,

F (γ(τ +N)) = F (γτ).

Thus F (γτ) has a Laurent expansion in powers of q
1
N . By (2.43), we see that this Laurent expansion

has at most finitely many negative terms. So we reach the assertion that F (τ) is a modular function
for Γ1(N).

Given a generating function of a(n) as defined in (1.1) and integers m and t, we can find an integer
N satisfying the conditions 1–7. If we are lucky, we may use Theorem 2.1 to find integers aδ, aδ,g
(δ|N, 0 < g ≤ bδ/2c) satisfying the conditions (1)–(4), which lead to a generalized eta-quotient

φ(τ) =
∏
δ|N

ηaδ(δτ)
∏
δ|N

0<g≤bδ/2c

η
aδ,g
δ,g (τ)

such that

F (τ) = φ(τ) gm,t(τ) (2.44)

is a modular function. It should be noted that such a modular function F (τ) may be not unique.
To derive a Ramanujan-type identity for a(mn + t), we aim to express F (τ) as a linear combination
of generalized eta-quotients over Q. To this end, we first investigate the behavior of F (τ) at each
cusp of Γ1(N). Let us recall some terminology of modular functions, see, for example [12, 48]. For

γ =
(
a b
c d

)
∈ Γ, the width wγ of a

c relative to Γ1(N) is the minimal positive integer h such that(
1 h

0 1

)
∈ γ−1Γ1(N)γ.

Let f(τ) be a modular function for Γ1(N). It is known that f(γτ) is invariant under γ−1Γ1(N)γ,
see [48, Lemma 1.14]. So f(γτ) has period wγ , which implies that f(γτ) has a Laurent expansion in
powers of q1/wγ . Since f(τ) is a modular function, this Laurent expansion has at most finitely many
negative terms. Write

f(γτ) =

∞∑
n=−∞

bnq
n/wγ , (2.45)
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where bn = 0 for almost all negative integers n. Let nγ be the smallest integer such that bnγ 6= 0. We
call nγ the γ-order of f at a

c , denoted by ordγ(f). Denote the smallest exponent of q on the right
hand side of (2.45) by vγ , so that

ordγ(f) = vγwγ . (2.46)

Furthermore, the order of f at the cusp a
c ∈ Q ∪ {∞} is defined by

orda/c(f) = ordγ(f) (2.47)

for some γ ∈ Γ such that γ∞ = a
c . It is known that orda/c(f) is well-defined, see [12, p. 72].

The following theorem gives estimates of the orders of F (τ) at cusps of Γ1(N).

Theorem 2.7. For a given partition function a(n) as defined by (1.1), and for given integers m and
t, let

F (τ) = φ(τ) gm,t(τ),

where
φ(τ) =

∏
δ|N

ηaδ(δτ)
∏
δ|N

0<g≤bδ/2c

η
aδ,g
δ,g (τ),

aδ and aδ,g are integers. Assume that F (τ) is a modular function for Γ1(N). Let {s1, s2, . . . , sε} be a
complete set of inequivalent cusps of Γ1(N), and for each 1 ≤ i ≤ ε, let αi ∈ Γ be such that αi∞ = si.
Then

ordsi(F (τ)) ≥ wαi (p(αi) + p∗(αi)), (2.48)

where p(γ) is given by (2.20) and p∗(γ) is defined in Lemma 2.6.

To compute the right hand side of (2.48), we need the following formula due to Cho, Koo and
Park [10]:

wγ =

{
1, if N = 4 and gcd(c, 4) = 2,

N
gcd(c,N) , otherwise,

(2.49)

where γ =
(
a b
c d

)
∈ Γ. For example, consider the modular function

F (τ) = q
2
5
η(10τ)η910,5(τ)

η810,4(τ)

∞∑
n=0

p(5n+ 2)qn

for Γ1(10) as given in (2.4). A complete set S(N) of inequivalent cusps of Γ1(N) has been found
in [10, Corollary 4]. In particular, for N = 10, we have

S(10) =

{
0,

1

5
,

1

4
,

3

10
,

1

3
,

3

5
,

1

2
, ∞

}
. (2.50)

Employing Theorem 2.7, we obtain the following lower bounds of the orders of F (τ) at cusps of Γ1(10):

ord0(F (τ)) ≥ −3, ord1/5(F (τ)) ≥ 19

5
, ord1/4(F (τ)) ≥ −2,

ord3/10(F (τ)) ≥ −18

5
, ord1/3(F (τ)) ≥ −3, ord3/5(F (τ)) ≥ 27

5
,

ord1/2(F (τ)) ≥ −2, ord∞(F (τ)) ≥ −2

5
.
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Notice that F (τ) may have poles at some cusps not equivalent to infinity.

We are now ready to prove Theorem 2.7.

Proof of Theorem 2.7. It is known that there exists a bijection from the set of all inequivalent cusps
of Γ1(N) to the double coset space Γ1(N)\Γ/Γ∞, as given by

Γ1(N)(a/c) 7→ Γ1(N)

(
a b

c d

)
Γ∞,

see [12, Proposition 3.8.5]. Since {s1, s2, . . . , sε} is a complete set of inequivalent cusps of Γ1(N)
and αi∞ = si for 1 ≤ i ≤ ε, we see that {α1, α2, . . . , αε} is a complete set of representatives of
Γ1(N)\Γ/Γ∞. Applying Lemma 2.5 with γi = αi, we find that there exists an integer w1 and a Taylor

series h(q) in powers of q
1
w1 such that

gm,t(αiτ) = (cτ + d)

1
2

∑
δ|M

rδ

qp(αi)h(q). (2.51)

By Lemma 2.6, there exists a positive integer w2 and a Taylor series h∗(q) in powers of q
1
w2 , such that

φ(αiτ) = (cτ + d)

1
2

∑
δ|N

aδ

qp
∗(αi)h∗(q). (2.52)

Combining (2.51) and (2.52), we get

F (αiτ) = (cτ + d)

1
2

( ∑
δ|N

aδ+
∑
δ|M

rδ

)
qp(αi)+p

∗(αi) h(q)h∗(q). (2.53)

Since F (τ) is a modular function for Γ1(N), using the condition (1) in Theorem 2.1, (2.53) reduces to

F (αiτ) = qp(αi)+p
∗(αi) h(q)h∗(q). (2.54)

Let vαi denote the smallest exponent of q on the right hand side of (2.54). The relation ordγ(f) = vγwγ
as given in (2.46) yields

vαi =
ordαi(F (τ))

wαi
. (2.55)

Since h(q) and h∗(q) are Taylor series, it follows from (2.54) that

vαi ≥ p(αi) + p∗(αi). (2.56)

Combining (2.55) and (2.56), we conclude that

ordαi(F (τ)) ≥ wαi (p(αi) + p∗(αi)). (2.57)

By the definition (2.47), we have

ordsi(F (τ)) = ordαi(F (τ)). (2.58)

Thus the estimate (2.48) follows from (2.57) and (2.58).
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3. Sketch of the Algorithm

In this section, we give a sketch of our algorithm. Given a generating function of a(n) as defined in
(1.1) and integers m and t, we can find an integer N satisfying the conditions 1–7. Assume that we
have found a generalized eta-quotient φ(τ) such that

F (τ) = φ(τ) gm,t(τ) (3.1)

is a modular function for Γ1(N). To derive an expression of F (τ), we consider a class of modular
functions: the set of generalized eta-quotients which are modular functions for Γ1(N) with poles only
at infinity, denoted by GE∞(N). Note that the notation E∞(N) is used by Radu [35] to denote the
set of modular eta-quotients with poles only at infinity for Γ0(N). Our goal is to derive an expression
of F (τ) in terms of the generators of GE∞(N). Then we are led to a Ramanujan-type identity for
a(mn+ t).

Our algorithm consists of the following steps:

Step 1. Use Theorem 2.1 to find a generalized eta-quotient φ(τ) for which F (τ) in (3.1) is a modular
function for Γ1(N).

Step 2. Find a finite set {z1, z2, . . . , zk} of generators of GE∞(N) by utilizing a formula of Robins
and the theory of Diophantine inequalities.

Step 3. Let 〈GE∞(N)〉Q be the vector space over Q generated by generalized eta-quotients inGE∞(N).
Employ the Algorithm AB of Radu for Γ1(N) on {z1, z2, . . . , zk} to generate a modular function
z and a Q[z]-module basis 1, e1, . . . , ew of 〈GE∞(N)〉Q.

Step 4. Find a generalized eta-quotient h in terms of generators of GE∞(N) for which the modular
function hF has a pole only at infinity. Theorem 2.7 can be used to compute the lower bounds
of the orders of hF at all cusps of Γ1(N).

Step 5. Determine whether hF is in 〈GE∞(N)〉Q by applying the Algorithm MW of Radu to hF , z
and 1, e1, . . . , ew. If this goal can be achieved, then F can be expressed as a linear combination
of generalized eta-quotients over Q.

For example, let us consider the overpartition function p(5n + 2). In Sect. 2., we found N = 10
satisfies the conditions 1–7.

Step 1. As shown in (2.4),

F (τ) = q
2
5
η(10τ)η910,5(τ)

η810,4(τ)

∞∑
n=0

p(5n+ 2)qn

is a modular function with respect to Γ1(10).
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Step 2. We obtain the following generators of GE∞(10):

z =
η(τ)η(5τ)

η25,1(τ)η2(10τ)η10,1(τ)
, z1 =

η2(2τ)η(5τ)η25,1(τ)

η(τ)η2(10τ)η410,1(τ)
,

z2 =
η3(5τ)η45,1(τ)

η(τ)η(2τ)η(10τ)η310,1(τ)
, z3 =

η(τ)η25,1(τ)η2(10τ)

η2(2τ)η(5τ)η410,1(τ)
,

z4 =
η4(τ)η25,1(τ)

η3(2τ)η(10τ)η410,1(τ)
.

(3.2)

Step 3. Applying the Algorithm AB of Radu to {z, z1, z2, z3, z4}, we find that 1 is a z-module basis
of 〈GE∞(10)〉Q. Thus

〈GE∞(10)〉Q = 〈1〉Q[z] . (3.3)

Step 4. We obtain that

h =
z21z

3
3z

3
4

z6z42
=
η11(τ)η125,1(τ)η15(10τ)

η7(2τ)η19(5τ)η1410,1(τ)
, (3.4)

for which hF has a pole only at infinity.

Step 5. Applying Radu’s Algorithm MW to hF , z and 1, we see that hF ∈ 〈GE∞(10)〉Q and

hF = 4z3 + 4z2 − 32z + 32. (3.5)

The relation (3.5) can be restated as the following theorem. The implementations of the above
steps will be described in the subsequent sections.

Theorem 3.1. We have

y

∞∑
n=0

p(5n+ 2)qn = 4z3 + 4z2 − 32z + 32, (3.6)

where

y =
(q; q)11∞(q10; q10)16∞(q, q4; q5)12∞(q5; q10)18∞

q3(q2; q2)7∞(q5; q5)19∞(q, q9; q10)14∞(q4, q6; q10)8∞
,

z =
(q; q)∞(q5; q5)∞

q(q, q4; q5)2∞(q10; q10)2∞(q, q9; q10)∞
.

4. Generators of GE∞(N)

In this section, we show how to implement Step 1 as in the sketch of the previous section, that is,
finding a finite set of generators of GE∞(N).

In light of the symmetry
ηδ,g(τ) = ηδ,δ−g(τ),
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for any δ > 0 and bδ/2c < g ≤ δ, we may rewrite the generalized eta-quotient h(τ) in GE∞(N) in the
following form ∏

δ|N
0≤g≤bδ/2c

η
aδ,g
δ,g (τ), (4.1)

where

aδ,g ∈


1
2Z, if g = 0 or g = δ

2 ,

Z, otherwise.
(4.2)

Throughout this section, we assume that the generalized eta-quotients are of the form (4.1).

To find a set of generators of GE∞(N), we first give a characterization of generalized eta-quotients
h(τ) in GE∞(N), which involves the orders of h(τ) at all cusps of Γ1(N). For any cusp s of Γ1(N),
in order to apply a formula of Robins [41, Theorem 4] to compute the order of h(τ) at a cusp s, we
need to find a cusp of the form λ

µε that is equivalent to s, where ε|N and

gcd(λ,N) = gcd(λ, µ) = gcd(µ,N) = 1. (4.3)

The existence of such a cusp in the above form is ensured by Corollary 4 of Cho, Koo and Park [10].

The following theorem gives a characterization of generalized eta-quotients in GE∞(N).

Theorem 4.1. Let
S(N) = {s1, s2, . . . , sε}

be a complete set of inequivalent cusps of Γ1(N) and sε = ∞. Assume that for any 1 ≤ i ≤ ε, si is
equivalent to λi

µiεi
, where εi|N and

gcd(λi, N) = gcd(λi, µi) = gcd(µi, N) = 1. (4.4)

Then a generalized eta-quotient h(τ) in the form of (4.1) is in GE∞(N) if and only if the following
conditions hold: 

∑
δ|N

aδ,0 = 0,

N
2

∑
δ|N

0≤g≤bδ/2c

gcd2(δ,ε1)
δε1

P2

(
λ1g

gcd(δ,ε1)

)
aδ,g ∈ N,

...
N
2

∑
δ|N

0≤g≤bδ/2c

gcd2(δ,εε−1)
δεε−1

P2

(
λε−1g

gcd(δ,εε−1)

)
aδ,g ∈ N,

N
2

∑
δ|N

0≤g≤bδ/2c

gcd2(δ,εε)
δεε

P2

(
λεg

gcd(δ,εε)

)
aδ,g ∈ Z.

(4.5)

Proof. Assume that the generalized eta-quotient h(τ) as given by (4.1) is in GE∞(N). By the trans-

formation formula of Schoeneberg [43, p. 199 (30)] for η
(s)
g,h(τ), we have∑

δ|N

aδ,0 = 0, (4.6)
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and so the first condition in (4.5) is satisfied. To show that the remaining conditions in (4.5) are
satisfied, we proceed to compute the order of h(τ) at each cusp in S(N). Since h(τ) ∈ GE∞(N), for
all 1 ≤ i ≤ ε− 1,

ordsi(h(τ)) ∈ N (4.7)

and

ordsε(h(τ)) ∈ Z. (4.8)

For any 1 ≤ i ≤ ε, since si is equivalent to λi
µiεi

, we get

ordsi(h(τ)) = ordλi/µiεi(h(τ)).

Using the formula of Robins [41, Theorem 4] for the order of h(τ) at the cusp λi/µiεi, namely,

ordλi/µiεi(h(τ)) =
N

2

∑
δ|N

0≤g≤bδ/2c

gcd2(δ, εi)

δεi
P2

( λig

gcd(δ, εi)

)
aδ,g,

we find that

ordsi(h(τ)) =
N

2

∑
δ|N

0≤g≤bδ/2c

gcd2(δ, εi)

δεi
P2

( λig

gcd(δ, εi)

)
aδ,g. (4.9)

For 1 ≤ i ≤ ε− 1, combining (4.7) and (4.9), we obtain that

N

2

∑
δ|N

0≤g≤bδ/2c

gcd2(δ, εi)

δεi
P2

( λig

gcd(δ, εi)

)
aδ,g ∈ N. (4.10)

Setting i = ε in (4.9), it follows from (4.8) that

N

2

∑
δ|N

0≤g≤bδ/2c

gcd2(δ, εε)

δεε
P2

( λεg

gcd(δ, εε)

)
aδ,g ∈ Z. (4.11)

Combining (4.6), (4.10) and (4.11), we are led to (4.5).

Conversely, assume that the conditions in (4.5) are satisfied. From (4.5) and (4.9), we see that

ord0(h(τ)) ∈ Z and ord∞(h(τ)) ∈ Z. (4.12)

The first condition of (4.5) says that ∑
δ|N

aδ,0 = 0. (4.13)

Robins [41] showed that if a generalized eta-quotient h(τ) satisfies (4.12) and (4.13), then for any
γ ∈ Γ1(N),

h(γτ) = h(τ). (4.14)

By (4.9) and the conditions in (4.5), we see that for any s ∈ S(N) \ {∞},

ords(h(τ)) ∈ N. (4.15)

Combining (4.14) and (4.15), we conclude that h(τ) ∈ GE∞(N).
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Based on the above theorem, the generalized eta-quotients in GE∞(N) are determined by the
solutions of (4.5). Next we show that (4.5) can be solved by transforming the conditions in (4.5) to a
system of Diophantine inequalities, so that we can obtain a finite set of generators of GE∞(N).

Set

yi =
N

2

∑
δ|N

0≤g≤bδ/2c

gcd2(δ, εi)

δεi
P2

( λig

gcd(δ, εi)

)
aδ,g

for 1 ≤ i ≤ ε. It follows from (4.5) that yi ∈ N for 1 ≤ i ≤ ε− 1 and yε ∈ Z. Let

χδ(g) =

2, if g = 0 or g = δ
2 ,

1, otherwise,

and a′δ,g = χδ(g) aδ,g for any δ|N and 0 ≤ g ≤ bδ/2c. By (4.2), it can be easily checked that each a′δ,g
is an integer. Then by Theorem 4.1, h(τ) ∈ GE∞(N) if and only if a′δ,g (δ|N, 0 ≤ g ≤ bδ/2c) and yi
(1 ≤ i ≤ ε) is an integer solution of the following Diophantine inequalities:

∑
δ|N

a′δ,0 = 0,

N
2

∑
δ|N

0≤g≤bδ/2c

gcd2(δ,ε1)
δε1

P2

(
λ1g

gcd(δ,ε1)

)
a′δ,g
χδ(g)

− y1 = 0,

...

N
2

∑
δ|N

0≤g≤bδ/2c

gcd2(δ,εε−1)
δεε−1

P2

(
λε−1g

gcd(δ,εε−1)

)
a′δ,g
χδ(g)

− yε−1 = 0,

N
2

∑
δ|N

0≤g≤bδ/2c

gcd2(δ,εε)
δεε

P2

(
λεg

gcd(δ,εε)

)
a′δ,g
χδ(g)

− yε = 0,

y1 ≥ 0,

...

yε−1 ≥ 0.

(4.16)

Notice that different cusps may have the same order for h(τ), there may exist redundant relations in
above system of relations. More precisely, if for two cusps si, sj ∈ S(N) \ {∞},

ordsi(h(τ)) = ordsj (h(τ)),

then we may ignore the relations contributed by sj . We now assume that after the elimination of
redundant relations, the remaining relations are still in the same form as in (4.16). It is known that
there exist integral vectors α1, . . . , αk such that the set of integer solutions of (4.16) is given by

{u1α1 + · · ·+ ukαk : u1, . . . , uk ∈ N},

see [44, p. 234], which implies that GE∞(N) has a finite set of generators z1, . . . , zk. One can use the
package 4ti2 [1] in SAGE to find such a set of integral vectors α1, . . . , αk.

Let us consider the case N = 10 as an example. Notice that for any generalized eta-quotient h(τ),

ord1/4(h(τ)) = ord1/2(h(τ))
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and
ord0(h(τ)) = ord1/3(h(τ)).

By (4.16), we obtain the following Diophantine inequalities after eliminating the relations contributed
by the cusps 1/2 and 1/3:

a′1,0 + a′2,0 + a′5,0 + a′10,0 = 0,

5 a′1,0
12 +

5 a′2,0
24 +

5 a′2,1
24 +

a′5,0
12 +

a5,1
6 +

a5,2
6

+
a′10,0
24 +

a10,1
12 +

a10,2
12 +

a10,3
12 +

a10,4
12 +

a′10,5
24 − y1 = 0,

...

5 a′1,0
24 +

5 a′2,0
12 −

5 a′2,1
24 +

a′5,0
24 +

a′5,1
12 +

a′5,2
12

+
a′10,0
12 −

a′10,1
12 +

a′10,2
6 − a′10,3

12 +
a′10,4
6 − a′10,5

24 − y5 = 0,

a′1,0
24 +

a′2,0
12 −

a′2,1
24 +

5 a′5,0
24 +

a′5,1
60 −

11 a′5,2
60

+
5 a′10,0

12 +
23 a′10,1

60 +
a′10,2
30 −

13 a′10,3
60 − 11 a′10,4

30 − 5 a′10,5
24 − y6 = 0

y1 ≥ 0,

...

y5 ≥ 0.

(4.17)

Each solution (a′1,0, . . . , a
′
10,5, y1, . . . , y6) of (4.17) can be expressed as

5∑
i=1

ciαi +

6∑
i=1

diβi, (4.18)

where c1, . . . , c5 are nonnegative integers, d1, . . . , d6 are integers and

α1 = (−1, 2, 0, 1, 2, 0,−2,−4, 0, 0, 0, 0, 0, 1, 0, 0, 0,−2),

α2 = (−1,−1, 0, 3, 4, 0,−1,−3, 0, 0, 0, 0, 0, 0, 1, 0, 0,−1),

α3 = (1,−2, 0,−1, 2, 0, 2,−4, 0, 0, 0, 0, 0, 0, 0, 0, 1,−1),

α4 = (1, 0, 0, 1,−2, 0,−2,−1, 0, 0, 0, 0, 0, 0, 0, 1, 0,−1),

α5 = (4,−3, 0, 0, 2, 0,−1,−4, 0, 0, 0, 0, 1, 0, 0, 0, 0,−2),

β1 = (0, 0, 0,−1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0),

β2 = (−1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0),

β3 = (−1, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0),

β4 = (0,−1, 0, 0, 1, 0, 1,−1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0),

β5 = (−1, 1, 0, 1, 0, 0,−1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0),
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β6 = (0, 0, 0, 0,−1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0).

Since aδ,g = a′δ,g/χδ(g), we obtain eleven generalized eta-quotients. It can be checked that the
generalized eta-quotients corresponding to β1, . . . , β6 are equal to 1. For example, the generalized
eta-quotient corresponding to β1 is given by

h(τ) =
η

1
2
10,0(τ)η

1
2
10,5(τ)

η
1
2
5,0(τ)

. (4.19)

Invoking (1.12), namely,

ηδ,0(τ) = η2(δτ) and ηδ, δ2
(τ) =

η2( δ2τ)

η2(δτ)
.

we obtain that h(τ) = 1. The generalized eta-quotients corresponding to α1, . . . , α5 are the generators
z1, z2, z3, z, z4 as given in (3.2).

5. Radu’s Algorithm AB

In the previous section, it was shown that GE∞(N) admits a finite set of generators z1, . . . , zk.
Radu [37] developed the Algorithm AB to produce a module basis of 〈E∞(N)〉Q, based on a finite
set of generators of E∞(N). In this section, we demonstrate how to apply Radu’s Algorithm AB to
a finite set of generators of GE∞(N) to derive a modular function z and a module basis 1, e1, . . . , ew
of the Q[z]-module 〈GE∞(N)〉Q.

We first give an overview of Radu’s Algorithm AB. Given modular functions z1, . . . , zk for Γ0(N)
with poles only at infinity, Radu’s Algorithm AB aims to produce a modular function z ∈ Q[z1, . . . , zk]
and a z-reduced sequence e1, . . . , ew ∈ Q[z1, . . . , zk] such that

Q[z1, . . . , zk] = Q[z] + Q[z]e1 + · · ·+ Q[z]ew. (5.1)

The condition on a z-reduced sequence ensures that 1, e1, . . . , ew form a Q[z]-module basis of Q[z1, . . . , zk].
The right hand side of (5.1) is denoted by 〈1, e1, . . . , ew〉Q[z].

Let 〈E∞(N)〉Q denote the vector space over Q generated by E∞(N). As pointed out by Radu [35],
〈E∞(N)〉Q does not have a finite basis as a vector space over Q, but it has a finite basis when considered
as a Q[z]-module for some z in 〈E∞(N)〉Q. To obtain such a modular function z and a Q[z]-module
basis, Radu applied the Algorithm AB to the generators z1, . . . , zk of E∞(N), then obtained a z-
module basis 1, e1, . . . , ew of the Q[z]-module 〈E∞(N)〉Q for some z ∈ 〈E∞(N)〉Q.

As will be seen, Radu’s Algorithm AB can be adapted to Γ1(N). The output of Algorithm AB
consists of a modular function z ∈ Q[z1, . . . , zk] and a z-reduced sequence e1, . . . , ew. The output of
the Algorithm AB will be carried over to the Algorithm MC and the Algorithm MW, which require
the input of a z-reduced sequence. Thus, for the purpose of this paper, we do not need to elaborate
on the definition of a z-reduced sequence, which can be found in [35].

It is known that if f is a modular function for Γ0(N) such that orda/c(f) ≥ 0 for every cusp a/c
of Γ0(N), then f is a constant, see Newman [28, Section, Proof of Lemma 3], Knopp [25, Chapter 2,
Theorem 7], and Radu [35, Lemma 5]. Notice that this assertion also holds for Γ1(N). Thus the Algo-
rithm AB applies to modular functions with poles only at infinity for Γ1(N). It is worth mentioning
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that the Algorithm AB is based on the algorithms MC, VB and MB, which are also valid for modular
functions with poles only at infinity for Γ1(N). Since the Algorithm MW of Radu is a refinement of
the Algorithm MC, it also works for Γ1(N).

We proceed to find a modular function z and a module basis of Q[z]-module 〈GE∞(N)〉Q. Let
{z1, . . . , zk} be a finite set of generators of GE∞(N). Note that

〈GE∞(N)〉Q = Q[z1, . . . , zk]. (5.2)

Applying the Algorithm AB to z1, z2, . . . , zk, we obtain a modular function z ∈ 〈GE∞(N)〉Q and a
z-reduced sequence e1, . . . , ew ∈ 〈GE∞(N)〉Q such that

Q[z1, . . . , zk] = 〈1, e1, . . . , ew〉Q[z]. (5.3)

Combining (5.2) and (5.3), we find that

〈GE∞(N)〉Q = 〈1, e1, . . . , ew〉Q[z].

Using the property that e1, e2, . . . , ew form a z-reduced sequence, we deduce that 1, e1, . . . , ew consti-
tute a Q[z]-module basis of 〈GE∞(N)〉Q.

For example, applying the Algorithm AB for Γ1(N) to the generators z, z1, z2, z3, z4 of GE∞(10)
given by (3.2), we obtain that

〈GE∞(10)〉Q = Q[z]. (5.4)

6. Finding a Generalized Eta-Quotient

In this section, we present an implementation of Step 4 in the algorithm outlined in Sect. 3.. Assume
that {z1, z2, . . . , zk} is a set of generators of GE∞(N) and F (τ) is a modular function for Γ1(N) as
given in (3.1). Our objective is to find a generalized eta-quotient h(τ) of the form

h(τ) =

k∏
j=1

z
tj
j , (6.1)

such that the modular function hF has a pole only at infinity, that is, for any cusp s 6=∞,

ords(hF ) ≥ 0, (6.2)

where tj are integers. To find the integers tj for which the relation (6.2) holds, we shall establish a
system of linear inequalities any solution of which leads to a desired generalized eta-quotient h. The
linear inequalities are derived by the lower bounds of ords(hF ) for all cusps s 6=∞.

Now we utilize Theorem 2.7 to obtain the lower bound of ords(hF ). Let

S(N) = {s1, s2, . . . , sε}

be a complete set of inequivalent cusps of Γ1(N) and sε = ∞. For any 1 ≤ i ≤ ε and 1 ≤ j ≤ k,
denote ordsizj by bij . By the definition (6.1), we have for each cusp si,

ordsi(hF ) =

k∑
j=1

tjbij + ordsi(F ). (6.3)
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By Theorem 2.7, we see that for any 1 ≤ i ≤ ε,

ordsi(F (τ)) ≥ di, (6.4)

where
di = wαi (p(αi) + p∗(αi)),

and αi is defined in Theorem 2.7. Combining (6.3) and (6.4), we get

ordsi(hF ) ≥
k∑
j=1

tjbij + di. (6.5)

Consider the Diophantine inequalities

k∑
j=1

tjb1j + d1 > −1,

...

k∑
j=1

tjb(ε−1)j + dε−1 > −1.

(6.6)

Now, if we can find integers t1, . . . , tk such that (6.6) holds, then (6.5) implies that the generalized
eta-quotient h(τ) determined by z1, z2, . . . , zk and t1, t2, . . . , tk satisfies (6.2). Hence we deduce that
any integer solution of (6.6) leads to a generalized eta-quotient h(τ) such that hF has a pole only at
infinity.

We note that different generalized eta-quotients h may lead to different expressions for F . In
order to get a relatively simple expression for F , we impose a further condition that the order of
hF at infinity is as large as possible. While we cannot rigorously describe what a simple expression
means, intuitively speaking, the above condition appears to play a role in getting a relatively simple
expression for F . Next we state how to find such a generalized eta-quotient h(τ).

It is known that there exist integral vectors α1, . . . , αw, β1, . . . , βl such that the set of integer
solutions of (6.6) is given by

{αi + v1β1 + · · ·+ vlβl : 1 ≤ i ≤ w and v1, . . . , vl ∈ N}, (6.7)

see [44, p. 234].

The following theorem shows how to find a generalized eta-quotient h such that ord∞(hF ) attains
the maximum value among all the h satisfying (6.6).

Theorem 6.1. For 1 ≤ i ≤ w, let

αi = (αi1, αi2, . . . , αik),

as given in (6.7). Let hi be the generalized eta-quotient determined by z1, z2, . . . , zk and αi, that is

hi(τ) =

k∏
j=1

z
αij
j . (6.8)

Assume that

ord∞(h1F ) ≥ ord∞(hiF ) (6.9)
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for 2 ≤ i ≤ w. For any integer solution µ = (µ1, µ2, . . . , µk) of (6.6), let g be the generalized
eta-quotient

g(τ) =

k∏
j=1

z
µj
j . (6.10)

Then we have

ord∞(h1F ) ≥ ord∞(gF ).

Proof. By (6.7), there exist an integer 1 ≤ i ≤ w, and nonnegative integers v1, . . . , vl such that

µ = αi + v1β1 + · · ·+ vlβl. (6.11)

For 1 ≤ j ≤ l, let

βj = (βj1, βj2, . . . , βjk).

and let fj be the generalized eta-quotient defined by

fj(τ) =

k∏
i=1

z
βji
i . (6.12)

Combining (6.8), (6.11) and (6.12), we obtain that

g(τ) = hi

l∏
j=1

f
vj
j .

Thus,

ord∞(gF ) = ord∞(hiF ) +

l∑
j=1

vjord∞(fj). (6.13)

Under the condition (6.9), it follows from (6.13) that

ord∞(gF ) ≤ ord∞(h1F ) +

l∑
j=1

vjord∞(fj). (6.14)

We claim that for each 1 ≤ j ≤ l,

ord∞(fj) ≤ 0. (6.15)

There are two cases.

Case 1. If fj(τ) is a constant, then ord∞(fj) = 0.

Case 2. If fj(τ) is not a constant, we shall show that ord∞(fj) < 0. Assume to the contrary that
ord∞(fj) ≥ 0. Since fj(τ) is not a constant, there exists a cusp s 6=∞ such that ords(fj) < 0. By the
assumption (6.2), we have ords(h1F ) ≥ 0. Let d = ords(h1F ). By (6.7), we see that α1 + (d+ 1)βj is
a solution of (6.6). It follows that the generalized eta-quotient fd+1

j h1 satisfies (6.2), and so

ords(f
d+1
j h1F ) ≥ 0. (6.16)
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However, since ords(fj) < 0, we have

ords(f
d+1
j h1F ) = (d+ 1)ords(fj) + d < 0,

which contradicts (6.16). Thus we deduce that ord∞(fj) < 0, as claimed. Combining the above two
cases, we find that (6.15) holds for each 1 ≤ j ≤ l. In view of (6.14), we conclude that

ord∞(gF ) ≤ ord∞(h1F ), (6.17)

and this completes the proof.

For the overpartition function p(5n + 2), we have found a modular function F (τ) for Γ1(10) as
given in (2.4). For the generators z, z1, z2, z3, z4 of GE∞(10) as given in (3.2), we obtain the following
system of linear inequalities (6.6): 

t5 − 3 > −1,

t3 + 19
5 > −1,

t2 − 2 > −1,

t4 − 18
5 > −1,

t1 + 27
5 > −1.

(6.18)

Each integer solution (t1, t2, t3, t4, t5) of (6.18) can be expressed as

α1 +

5∑
i=1

viβi, (6.19)

where v1, . . . , v5 are nonnegative integers, and

α1 = (−6, 2,−4, 3, 3),

β1 = (1, 0, 0, 0, 0),

β2 = (0, 1, 0, 0, 0),

β3 = (0, 0, 1, 0, 0),

β4 = (0, 0, 0, 1, 0),

β5 = (0, 0, 0, 0, 1).

The generalized eta-quotient corresponding to α1 is

h =
z21z

3
3z

3
4

z6z42
=
η11(τ)η125,1(τ)η15(10τ)

η7(2τ)η19(5τ)η1410,1(τ)
(6.20)

and hF has a pole only at infinity. Consider a different solution µ = α1 + 2β2 = (6, 4,−4, 3, 3) of
(6.18), we get a generalized eta-quotient

h′ =
z41z

3
3z

3
4

z6z42
=

η9(τ)η165,1(τ)η11(10τ)

η3(2τ)η17(5τ)η2210,1(τ)
(6.21)

and h′F has a pole only at infinity. The orders of hF and h′F at infinity are −3 and −7, respectively.
As will be seen in the next section, the Ramanujan-type identity derived from hF takes a simpler
form than that derived from h′F .
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7. Ramanujan-Type Identities

Given a partition function a(n) as defined by (1.1), and integers m and t, let

F (τ) = φ(τ) gm,t(τ) (7.1)

be a modular function as given in (3.1), where φ(τ) is a generalized eta-quotient of the form (2.2),
and

gm,t(τ) = q
t−`
m

∞∑
n=0

a(mn+ t)qn,

as given in (2.1).

Assume that we have found a generalized eta-quotient h(τ) such that hF has a pole only at infinity.
In Sect. 5., we derived a modular function z ∈ 〈GE∞(N)〉Q and a z-reduced sequence e1, . . . , ew such
that

〈GE∞(N)〉Q = Q[z] + Q[z]e1 + · · ·+ Q[z]ew.

In this section, we aim to derive an expression for hF in terms of z and the module basis 1, e1, . . . , ew.
This leads to a Ramanujan-type identity for a(mn+ t).

We first adapt Radu’s Algorithm MC, original designed for Γ0(N), to Γ1(N), and apply it to
hF , z and e1, . . . , ew to determine whether hF belongs to 〈GE∞(N)〉Q. By Radu [35, Lemma 5],
the Algorithm MC requires the non-positive parts of the q-expansion of hF , and finite parts of the
q-expansions of z, and e1, . . . , ew. More precisely, by (7.1), the non-positive parts of the q-expansion
of hF can be computed via the generating function (1.1) of a(n) and the q-expansions of h(τ) and
φ(τ). If the algorithm confirms that hF ∈ 〈GE∞(N)〉Q, then we may utilize the Γ1(N) version of
Algorithm MW to express hF as

hF = p0(z) + p1(z)e1 + · · ·+ pw(z)ew, (7.2)

where pi(z) ∈ Q[z] for 0 ≤ i ≤ w.

To this end, we first utilize the Radu’s Algorithm MC for Γ1(N) to determine whether hF belongs
to 〈GE∞(N)〉Q. Once we have confirmed that hF ∈ 〈GE∞(N)〉Q, we may utilize the Algorithm MW
of Radu for Γ1(N) to derive a Ramanujan-type identity for a(mn+ t).

We now give an algorithmic derivation of the Ramanujan-type identity for p(5n+ 2), as stated in
Theorem 3.1.

For F , z and h given in (2.4), (3.2) and (6.20), we have

hF =
4

q3
+

28

q2
+

56

q
+ 140 +O(q),

z =
1

q
+ 2 + 2q + q2 +O(q3).

Applying Radu’s Algorithm MC to hF and z, we deduce that

hF ∈ 〈GE∞(10)〉Q .
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With the input hF and z, the Algorithm MW yields

hF = 4z3 + 4z2 − 32z + 32. (7.3)

Substituting F , z and h into (7.3), we obtain the Ramanujan-type identity in Theorem 3.1. However,
if we take h′ as given in (6.21), then we get

h′F = 4z7 − 4z6 − 44z5 + 100z4 − 20z3 − 92z2 + 32z + 32. (7.4)

In the same vain, we obtain a Ramanujan-type identity for p(5n+ 3).

Theorem 7.1. We have

y

∞∑
n=0

p(5n+ 3)qn = 8z3 − 12z2 + 16z − 16,

where z is given in Theorem 3.1 and

y =
(q; q)12∞(q5; q5)12∞(q, q9; q10)2∞(q4, q6; q10)8∞
q3(q2; q2)7∞(q, q4; q5)6∞(q10; q10)16∞(q5; q10)14∞

.

Notice that Theorem 3.1 and Theorem 7.1 can be considered as witness identities for the following
congruences of Hirschhorn and Sellers [24]:

p(5n+ 2) ≡ 0 (mod 4),

p(5n+ 3) ≡ 0 (mod 4).

8. A Witness Identity for p(11n + 6)

In this section, we demonstrate how our algorithm gives rise to a witness identity for p(11n + 6).
We begin with an overview of the witness identities due to Bilgici and Ekin [8], Radu [35] and
Hemmecke [20]. Bilgici and Ekin [8] used the method of Kolberg to deduce the generating functions
of p(11n+ t) for all 0 ≤ t ≤ 10. In particular, they obtained the following witness identity:

∞∑
n=0

p(11n+ 6)qn = 11x(−x31x4 − x32x5 − x34x2 − x33x1 − x35x3 − 14x21x4

− 14x22x5 − 14x24x2 − 14x23x1 − 14x25x3 − 29x1x4

−29x2x5 − 29x2x4 − 29x1x3 − 29x3x5 + 106) , (8.1)

where

x =
q4(q11; q11)11∞

(q; q)12∞
,

x1 = − (q4, q7; q11)2∞(q, q10; q11)∞
(q2, q9; q11)2∞(q5, q6; q11)∞

x2 = − (q2, q9; q11)2∞(q5, q6; q11)∞
q(q, q10; q11)2∞(q3, q8; q11)∞

,
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x3 =
q2(q, q10; q11)2∞(q3, q8; q11)∞
(q4, q7; q11)∞(q5, q6; q11)2∞

,

x4 =
(q4, q7; q11)∞(q5, q6; q11)2∞
q(q2, q9; q11)∞(q3, q8; q11)2∞

,

x5 = − (q2, q9; q11)∞(q3, q8; q11)2∞
(q4, q7; q11)2∞(q, q10; q11)∞

.

Using the Ramanujan–Kolberg algorithm, Radu [35] derived a witness identity for p(11n+ 6). A set
{M1,M2, . . . ,M7} of generators of E∞(22) can be found in [35]. For example,

M1 =
η7(τ)η3(11τ)

η3(2τ)η7(22τ)
.

Let

F =
(q; q)10∞(q2; q2)2∞(q11; q11)11∞

q14(q22; q22)22∞

∞∑
n=0

p(11n+ 6)qn.

Radu showed that

F = 11(98t4 + 1263t3 + 2877t2 + 1019t− 1997)

+ 11z1(17t2 + 490t2 + 54t− 871)

+ 11z2(t3 + 251t2 + 488t− 614), (8.2)

where

t =
3

88
M1 +

1

11
M2 −

1

8
M4,

z1 = − 5

88
M1 +

2

11
M2 −

1

8
M4 − 3,

z2 =
1

44
M1 −

3

11
M2 +

5

4
M4.

Noting that (1 − qn)11 ≡ 1 − q11n (mod 11) and (1 − qn)8 ≡ (1 − q2n)4 (mod 8), we see that (8.2)
implies the Ramanujan congruence for p(11n+ 6). Hemmecke [20] generalized Radu’s algorithm and
derived the following witness identity:

F = 112 · 3068M7 + 112 · (3M1 + 4236)M6

+ 11 · (285M1 + 11 · 5972)M5 + 11(1867M1 + 11 · 2476)M2

− 11

8
(M3

1 + 1011M2
1 + 11 · 6588M1 + 112 · 10880)

+
11

8
(M2

1 + 11 · 4497M1 + 112 · 3156)M4. (8.3)

We are now ready to give an algorithmic derivation of the identity for p(11n + 6) as stated in
Theorem 1.1.
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Proof of Theorem 1.1. Notice that N = 11 satisfies all the conditions 1–7. We proceed with the
following steps.

Step 1. By Theorem 2.1, we find that

F (τ) = q(q11; q11)∞

∞∑
n=0

p(11n+ 6)qn

is a modular function for Γ1(11).

Step 2. Solving the system of Diophantine inequalities (4.16) for N = 11, we obtain a set of 27
generators of GE∞(11) including z and e as given in (1.8) and (1.9).

Step 3. Applying Radu’s Algorithm AB, we deduce that

〈GE∞(11)〉Q = 〈1, e〉Q[z].

Step 4. By virtue of Theorem 2.7 and Theorem 6.1, we get

h =
η24(τ)

η24(11τ)η2811,1(τ)η1611,2(τ)η1211,3(τ)η411,4(τ)

for which hF has a pole only at infinity.

Step 5. Employing Radu’s Algorithm MC and Algorithm MW, we deduce that hF ∈ 〈GE∞(11)〉Q
and

hF = 11z10 + 121z8e+ 330z9 − 484z7e− 990z8 + 484z6e+ 792z7

− 484z5e+ 44z6 + 1089z4e− 132z5 − 1452z3e− 451z4

+ 968z2e+ 748z3 − 242ze− 429z2 + 77z + 11.

This completes the proof.

9. Further Examples

In this section, we derive Ramanujan-type identities on the broken 2-diamond partition function. The
notion of the broken k-diamond partitions was introduced by Andrews and Paule [4] in their study
of MacMahon’s partition analysis. The number of broken k-diamond partitions of n is denoted by
∆k(n). They showed that the generating function of ∆k(n) is given by

∞∑
n=0

∆k(n)qn =
(q2; q2)∞(q2k+1; q2k+1)∞
(q; q)3∞(q4k+2; q4k+2)∞

.

Andrews and Paule conjectured that

∆2(25n+ 14) ≡ 0 (mod 5). (9.1)
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Chan [9] proved this conjecture and also showed that

∆2(25n+ 24) ≡ 0 (mod 5). (9.2)

Define a(n) by
∞∑
n=0

a(n)qn =
(q; q)2∞(q2; q2)∞

(q10; q10)∞
.

Since (1− qn)5 ≡ 1− q5n (mod 5), we see that ∆2(n) ≡ a(n) (mod 5). By the Ramanujan–Kolberg
algorithm, Radu [35] obtained the following identity:

(q2; q2)12∞(q5; q5)10∞
q4(q; q)6∞(q10; q10)20∞

( ∞∑
n=0

a(25n+ 14)qn

)( ∞∑
n=0

a(25n+ 24)qn

)

= 25
(
2t4 + 28t3 + 155t2 + 400t+ 400

)
, (9.3)

where

t =
(q; q)3∞(q5; q5)∞

q(q2; q2)∞(q10; q10)3∞
.

The congruences (9.1) and (9.2) are easy consequences of (9.3). Let

z =
(q2; q2)∞(q5; q5)5∞
q(q; q)∞(q10; q10)5∞

.

Using the package RaduRK, Smoot [46] deduced that

(q; q)126∞ (q5; q5)70∞
q58(q2; q2)2∞(q10; q10)190∞

( ∞∑
n=0

∆2(25n+ 14)qn

)( ∞∑
n=0

∆2(25n+ 24)qn

)

is a polynomial in z of degree 58 with integer coefficients divisible by 25. It is not hard to see that
the above relation implies the congruences (9.1) and (9.2).

Our algorithm provides the following witness identities for ∆2(25n+ 14) and ∆2(25n+ 24).

Theorem 9.1. Let

z =
(q; q)∞(q5; q5)∞

q(q, q4; q5)2∞(q10; q10)2∞(q, q9; q10)∞
.

Then

(q; q)92∞(q5; q5)14∞(q, q4; q5)52∞(q4, q6; q10)4∞
q57(q2; q2)58∞(q10; q10)46∞(q, q9; q10)109∞ (q5; q10)10∞

∞∑
n=0

∆2(25n+ 14)qn (9.4)

and

(q; q)92∞(q, q4; q5)62∞(q5; q10)6∞
q57(q2; q2)59∞(q5; q5)2∞(q10; q10)29∞(q, q9; q10)119∞ (q4, q6; q10)4∞

∞∑
n=0

∆2(25n+ 24)qn (9.5)

are both polynomials in z of degree 57 with integer coefficients divisible by 5.
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More precisely, (9.4) equals

10445z57 + 65072505z56 + 29885191700z55 + 2909565072375z54

+ 58232762317950z53 − 771909964270635z52 − 8976196273201590z51

+ 168096305999838525z50 − 552704071429548750z49

− 6285133254753356625z48 + 76077164750182724400z47

− 350853605818104040400z46 + 430844106211910184000z45

+ 4332665789140456020000z44 − 31965516977695010144000z43

+ 116598487085627561478400z42 − 254498980254624708134400z41

+ 226239786150985106784000z40 + 630144010340120712320000z39

− 3270835930300215379968000z38 + 7873377561448743273881600z37

− 12188753588700934348185600z36 + 11409105186984502777856000z35

− 1853370295840331059200000z34 − 12922596637778941349888000z33

+ 19993842975085327602810880z32 − 4136695001339260651438080z31

− 40585258593920366687027200z30 + 107607975413970670190592000z29

− 189170246667253453894451200z28 + 290673733377906514130370560z27

− 429481500981884772899880960z26 + 614653426107799377123737600z25

− 825958110337598656348160000z24 + 1014095417844181497806848000z23

− 1125028176866670548300595200z22 + 1129311459482608004707123200z21

− 1033623338399676468559872000z20 + 869136778177466010173440000z19

− 672028063551221072396288000z18 + 473438441949368700161228800z17

− 299190013959544777788620800z16 + 167798468337926970277888000z15

− 84223564508812395151360000z14 + 39006701101726128144384000z13

− 16949659707832925998284800z12 + 6525804102142065953996800z11

− 1953358789335809261568000z10 + 408567853900785254400000z9

− 90672379909684330496000z8 + 43132985715615837716480z7

− 13837533253868380487680z6 + 78654993658072268800z5

+ 776840149395832832000z4 − 482905506919219200z3

35



− 31960428074332323840z2 − 1612499772831170560z

− 7036874417766400.

The explicit expression for (9.5) is omitted.

We end this section by noting that our algorithmic approach can be used to derive dissection
formulas on quotients in the form of (1.1), that is,∏

δ|M

(qδ; qδ)rδ∞, (9.6)

where M is a positive integer and rδ, rδ,g are integers. Let a(n) be the partition function defined
by (1.1), and let m be a positive integer. If our algorithm can be utilized to find a formula for the
generating function of a(mn+ t) for each 0 ≤ t ≤ m− 1, then we are led to an m-dissection formula
on the quotient (9.6). For example, the algorithm is valid to produce the 5-dissection formulas for
(q; q)∞ and 1

(q;q)∞
, see Berndt [6, p. 165].

10. More General Partition Functions

While many partition functions a(n) are of the form (1.1), there are partition functions that do
not seem to fall into this framework, such as Andrews’ (k, i)-singular overpartition function Qk,i(n).
Andrews [3] derived the generating function

∞∑
n=0

Qk,i(n)qn =
(qk,−qi,−qk−i; qk)∞

(q; q)∞
. (10.1)

In general, it is not always the case that a quotient on the right hand side of (10.1) can be expressed
in the form of (1.1).

The objective of this section is to extend our algorithm to partition functions b(n) defined by

∞∑
n=0

b(n)qn =
∏
δ|M

(qδ; qδ)rδ∞
∏
δ|M

0<g<δ

(qg, qδ−g; qδ)
rδ,g
∞ , (10.2)

where M is a positive integer and rδ, rδ,g are integers. In fact, for any k and 1 ≤ i < k
2 , (10.1) can be

written in the form of (10.2):

∞∑
n=0

Qk,i(n)qn =
(qk; qk)∞(q2i, q2k−2i; q2k)∞

(q; q)∞(qi, qk−i; qk)∞
, (10.3)

where M = 2k,

rδ =


−1, δ = 1,

1, δ = k,

0, otherwise,

and rδ,g =


−1, δ = k, g = i,

1, δ = 2k, g = 2i,

0, otherwise.
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Analogous to the generating function gm,t(τ) in Sect. 2. as given by Radu [37], we adopt the same
notation for the generating function of b(mn+ t):

gm,t(τ) = q
t−`
m

∞∑
n=0

b(mn+ t)qn, (10.4)

where

` = − 1

24

∑
δ|M

δrδ −
∑
δ|M

0<g<δ

δ

2
P2

(g
δ

)
rδ,g.

As before,

P2(t) = {t}2 − {t}+
1

6
,

and {t} is the fractional part of t.

To derive a Ramanujan-type identity for b(mn + t), we follow the same procedure as in Sect. 3..
There are only a few modifications that should be taken into account in order to extend Theorem
2.1 and Theorem 2.7 to the generating function gm,t(τ) in (10.4). The proofs are similar to those of
Theorem 2.1 and Theorem 2.7 and hence are omitted.

Let φ(τ) be a generalized eta-quotient and F = φ(τ)gm,t(τ). Similar to Theorems 2.1, we give a
criterion for F (τ) to be a modular function for Γ1(N). Let κ = gcd(m2 − 1, 24). First, we assume
that N satisfies the following conditions:

1. M |N .

2. p|N for any prime p|m.

3. κN
∑
δ|M

0<g<δ

g
δ rδ,g ≡ 0 (mod 2).

4. κN
∑
δ|M

0<g<δ

rδ,g ≡ 0 (mod 4).

5. κmN2
∑
δ|M

0<g<δ

rδ,g
δ ≡ 0 (mod 12).

6. κN
∑
δ|M

rδ ≡ 0 (mod 8).

7. κmN2
∑
δ|M

rδ
δ ≡ 0 (mod 24).

8. 24mM
gcd(κα(t),24mM) |N , where

α(t) = −M
∑
δ|M

δrδ − 12M
∑
δ|M

0<g<δ

δP2

(g
δ

)
rδ,g − 24Mt.

9. Let
∏
δ|M δ|rδ| = 2zj, where z ∈ N and j is odd. If 2|m, then κN ≡ 0 (mod 4) and Nz ≡ 0

(mod 8), or z ≡ 0 (mod 2) and N(j − 1) ≡ 0 (mod 8).
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10. Let Sn = {j2 (mod n) : j ∈ Zn, gcd(j, n) = 1, j ≡ 1 (mod N)}. For any s ∈ S24mM ,

s− 1

24

∑
δ|M

δrδ + (s− 1)
∑
δ|M

0<g<δ

δ

2
P2

(g
δ

)
rδ,g + ts ≡ t (mod m).

For a given partition function b(n), and given integers m and t, such a positive integer N always
exists, because N = 24mM satisfies the conditions 1–10. For example, for Andrews’ (3,1)-singular
overpartition function Q3,1(n), and for m = 9 and t = 3 we have N = 6. Compared with the conditions
in Sect. 2., the conditions 3–5 are required to deal with the generalized eta-quotients.

Theorem 10.1. For a given partition function b(n) as defined by (10.2), and for given integers m
and t, suppose that N is a positive integer satisfying the conditions 1–10. Let

F (τ) = φ(τ) gm,t(τ),

where
φ(τ) =

∏
δ|N

ηaδ(δτ)
∏
δ|N

0<g≤bδ/2c

η
aδ,g
δ,g (τ),

and aδ and aδ,g are integers. Then F (τ) is a modular function with respect to Γ1(N) if and only if aδ
and aδ,g satisfy the following conditions:

(1)
∑
δ|N

aδ +
∑
δ|M

rδ = 0,

(2) N
∑
δ|N

aδ
δ + 2N

∑
δ|N

0<g≤bδ/2c

aδ,g
δ +Nm

∑
δ|M

rδ
δ + 2Nm

∑
δ|M

0<g<δ

rδ,g
δ ≡ 0 (mod 24),

(3)
∑
δ|N

δaδ + 12
∑
δ|N

0<g≤bδ/2c

δP2

(
g
δ

)
aδ,g +m

∑
δ|M

δrδ

+12m
∑
δ|M

0<g<δ

δP2

(
g
δ

)
rδ,g + (m2−1)α(t)

mM ≡ 0 (mod 24),

where
α(t) = −M

∑
δ|M

δrδ − 12M
∑
δ|M

0<g<δ

δP2

(g
δ

)
rδ,g − 24Mt,

(4) For any integer 0 < a < 12N with gcd (a, 6) = 1 and a ≡ 1 (mod N),

∏
δ|N

(
δ

a

)|aδ|∏
δ|M

(
mδ

a

)|rδ|
e

∑
δ|N

bδ/2c∑
g=1

πi
(
g
δ−

1
2

)
(a−1)aδ,g+

∑
δ|M

δ−1∑
g=1

πi
(
g
δ−

1
2

)
(a−1)rδ,g

= 1.

In the notation p(γ, λ) and p(γ) in (2.19) and (2.20), we define the map p : Γ× Zm → Q by

p(γ, λ) =
1

24

∑
δ|M

gcd2(δ(a+ κλc),mc)

δm
rδ
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+
1

2

∑
δ|M

0<g<δ

gcd2(δ(a+ κλc),mc)

δm
P2

(
(a+ κλc)g

gcd(δ(a+ κλc),mc)

)
rδ,g,

and define p(γ) by

p(γ) = min{p(γ, λ) : λ = 0, 1, . . . ,m− 1}. (10.5)

Parallel to Theorem 2.7, we obtain lower bounds of the orders of F (τ) at cusps of Γ1(N).

Theorem 10.2. For a given partition function b(n) as defined by (10.2), and for given integers m
and t, let

F (τ) = φ(τ) gm,t(τ),

where
φ(τ) =

∏
δ|N

ηaδ(δτ)
∏
δ|N

0<g≤bδ/2c

η
aδ,g
δ,g (τ),

aδ and aδ,g are integers. Assume that F (τ) is a modular function for Γ1(N). Let {s1, s2, . . . , sε} be a
complete set of inequivalent cusps of Γ1(N), and for each 1 ≤ i ≤ ε, let αi ∈ Γ be such that αi∞ = si.
Then

ordsi(F (τ)) ≥ wαi (p(αi) + p∗(αi)), (10.6)

where p(γ) is given by (10.5) and p∗(γ) is defined in Lemma 2.6.

For a given partition function b(n), and given integers m and t, assume that we have found a
generalized eta-quotient φ(τ) such that

F (τ) = φ(τ) gm,t(τ) (10.7)

is a modular function for Γ1(N). Utilizing the algorithm in Sect. 3., we try to express F (τ) as a linear
combination of generalized eta-quotients with level N . If we succeed, then we obtain a Ramanujan-
type identity for b(mn+ t). Note that Theorem 10.2 is needed to find a generalized eta-quotient h(τ)
such that hF has a pole only at infinity.

For example, we can derive Ramanujan-type identities on the singular overpartition function in-
troduced by Andrews [3]. The number of (k, i)-singular overpartitions of n is denoted by Qk,i(n)

(1 ≤ i < k
2 ). For k = 3 and i = 1, (10.3) specializes to

∞∑
n=0

Q3,1(n)qn =
(q3; q3)∞(q2, q4; q6)∞

(q; q)∞(q, q2; q3)∞
.

When applied to the above generating function, our algorithm produces the Ramanujan-type identities
on Q3,1(9n+ 3) and Q3,1(9n+ 6) due to Shen [45].

Theorem 10.3. We have

(q; q)14∞
q(q2; q2)5∞(q3; q3)6∞(q6; q6)3∞

∞∑
n=0

Q3,1(9n+ 3)qn = 6z + 96,
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and

(q; q)13∞
q(q2; q2)4∞(q3; q3)3∞(q6; q6)6∞

∞∑
n=0

Q3,1(9n+ 6)qn = 24z + 96,

where

z =
(q2; q2)3∞(q3; q3)9∞
q(q; q)3∞(q6; q6)9∞

.

Our extended algorithm can also be used to derive dissection formulas on the quotients in the form
of (10.2), that is, ∏

δ|M

(qδ; qδ)rδ∞
∏
δ|M

0<g<δ

(qg, qδ−g; qδ)
rδ,g
∞ , (10.8)

where M is a positive integer and rδ, rδ,g are integers. Let b(n) be the partition function defined
by (10.2), and let m be a positive integer. If our algorithm can be utilized to find a formula for the
generating function of b(mn+ t) for each 0 ≤ t ≤ m−1, then we are led to an m-dissection formula on
the quotient in (10.8). For example, we get the 2-, 4-dissections of the Rogers–Ramanujan continued
fraction [2, 21, 27, 40], the 8-dissections of the Gordon’s continued fraction [22, 49] and the 2-, 3-, 4-,
6-dissections of Ramanujan’s cubic continued fraction [23,47].

We now demonstrate how to deduce the 2-dissection formula for the Rogers–Ramanujan continued
fraction:

R(q) =
1

1 +
q

1 +
q2

1 +
q3

1 + · · · .

Rogers [42, p. 329] showed that

R(q) =
(q2, q3; q5)∞
(q, q4; q5)∞

. (10.9)

The following 2-dissection formulas of Ramanujan [40, p. 50] were first proved by Andrews [2]. With
respect to the quotient in (10.9), we have to count on the extended algorithm because (10.9) cannot
be expressed in the form of (1.1).

Theorem 10.4. We have

R(q) =
(q8, q12; q20)2∞

(q6, q14; q20)∞(q10, q10; q20)∞
+ q

(q2, q18; q20)∞(q8, q12; q20)∞
(q4, q16; q20)∞(q10, q10; q20)∞

(10.10)

and

R(q)−1 =
(q4, q16; q20)2∞

(q2, q18; q20)∞(q10, q10; q20)∞
− q (q4, q16; q20)∞(q6, q14; q20)∞

(q8, q12; q20)∞(q10, q10; q20)∞
. (10.11)

Proof. As far as (10.9) is concerned, we have M = 5, r5,1 = −1 and r5,2 = 1. We find that N = 10
satisfies the conditions 1–10. Let r(n) be defined by

R(q) =

∞∑
n=0

r(n)qn.
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Employing our algorithm, we obtain that

∞∑
n=0

r(2n)qn =
z1z3
z2z2

·
η210,5(τ)

η210,4(τ)

and

∞∑
n=0

r(2n+ 1)qn =
z32z

4

z21z
3
3

·
η810,4(τ)

η810,5(τ)
,

where z, z1, z2 and z3 are given in (3.2). A direct computation yields (10.10). Similarly, we get
(10.11). This completes the proof.

Gordon [17] showed that

1 + q +
q2

1 + q3 +
q4

1 + q5 +
q6

1 + q7 + · · · =
(q3, q5; q8)∞
(q, q7; q8)∞

. (10.12)

Using our algorithm, we deduce the following 8-dissection formulas of Hirschhorn for (10.12) and
its reciprocal, see [22, pp. 373–374].

Theorem 10.5 (Hirschhorn [22]). We have(
q3, q5; q8

)
∞

(q, q7; q8)∞
=

(
−q24,−q32,−q32,−q40, q64, q64; q64

)
∞

(q8, q16, q16, q24, q32, q32; q32)∞

+ q

(
−q16,−q24,−q40,−q48, q64, q64; q64

)
∞

(q16, q8, q24, q24, q48, q64, q64; q64)∞

+ q2
(
−q16,−q24,−q40,−q48, q64, q64; q64

)
∞

(q8, q16, q16, q24, q32, q64; q64; q64)∞

− 2q12
(
−q8,−q16,−q64,−q64, q64, q64; q64

)
∞

(q8, q16, q16, q24, q32, q32; q32)∞

− q5
(
−q8,−q16,−q48,−q56, q64, q64; q64

)
∞

(q8, q8, q24, q24, q32, q32; q32)∞

− q6
(
−q8,−q16,−q48,−q56, q64, q64; q64

)
∞

(q8, q16, q16, q24, q32, q32; q32)∞
,

(
q, q7; q8

)
∞

(q3, q5; q8)∞
=

(
−q16,−q24,−q40,−q48, q64, q64; q64

)
∞

(q8, q8, q24, q24, q32, q32; q32)∞

− q
(
−q16,−q24,−q40,−q48, q64, q64; q64

)
∞

(q8, q16, q16, q24, q32, q32; q32)∞

+ q3
(
−q8,−q32,−q32,−q56, q64, q64; q64

)
∞

(q8, q16, q16, q24, q32, q32; q32)∞
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− q4
(
−q8,−q16,−q48,−q56, q64, q64; q64

)
∞

(q8, q8, q24, q24, q32, q32; q32)∞

+ q5
(
−q8,−q16,−q48,−q56, q64, q64; q64

)
∞

(q8, q16, q16, q24, q32, q32; q32)∞

− 2q7
(
−q24,−q40,−q64,−q64, q64, q64; q64

)
∞

(q8, q16, q16, q24, q32, q32; q32)∞
.

Ramanujan’s cubic continued fraction is defined by

1

1 +
q + q2

1 +
q2 + q4

1 + · · · ,

which equals (
q, q5; q6

)
∞

(q3, q3; q6)∞
, (10.13)

see [40, p. 44]. Applying our algorithm to (10.13) and its reciprocal, we are led to the 2-, 3-, 4- and
6-dissection formulas in Theorem 1.1–Theorem 1.4 in [23].
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