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Abstract

Let p(n) denote the partition function and let ∆ be the difference operator re-
spect to n. In this paper, we obtain a lower bound for ∆2 log n−1

√
p(n− 1)/(n− 1),

leading to a proof of the conjecture of Sun on the log-convexity of { n
√
p(n)/n}n≥60.

Using the same argument, it can be shown that for any real number α, there exists
an integer n(α) such that the sequence { n

√
p(n)/nα}n≥n(α) is log-convex. More-

over, we show that lim
n→+∞

n
5
2 ∆2 log n

√
p(n) = 3π/

√
24. Finally, by finding an upper

bound of ∆2 log n−1
√
p(n− 1), we establish an inequality on the ratio

n−1
√
p(n−1)

n
√
p(n)

.
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1 Introduction

The objective of this paper is to study the log-behavior of the sequences n
√
p(n) and

n
√
p(n)/n, where p(n) denotes the number of partitions of a nonnegative integer n. A

positive sequence {an}n≥0 is log-convex if it satisfies that for n ≥ 1,

a2n − an−1an+1 ≤ 0,

1



and it is called log-concave if for n ≥ 1,

a2n − an−1an+1 ≥ 0.

Let r(n) = n
√
p(n)/n and let ∆ be the difference operator respect to n. Sun [11]

conjectured that the sequence {r(n)}n≥60 is log-convex. Desalvo and Pak [5] noticed that
the log-convexity of {r(n)}n≥60 can be derived from an estimate for ∆2 log r(n−1), see [5,
Final Remark 7.7]. They also remarked that their approach to bounding −∆2 log p(n−1)
does not seem to apply to ∆2 log r(n − 1). In this paper, we obtain a lower bound for
∆2 log r(n− 1), leading to a proof of the log-convexity of {r(n)}n≥60.

Theorem 1.1 The sequence {r(n)}n≥60 is log-convex.

The log-convexity of {r(n)}n≥60 implies the log-convexity of { n
√
p(n)}n≥26, because

the sequence { n
√
n}n≥4 is log-convex [11]. It is known that lim

n→+∞
n
√
p(n) = 1. For a

combinatorial proof of this fact, see Andrews [1]. Sun [11] proposed the conjecture that
{ n
√
p(n)}n≥6 is strictly decreasing, which has been proved by Wang and Zhu [12]. The

log-convexity of { n
√
p(n)}n≥26 was also conjectured by Sun [11]. It is easy to see that

the log-convexity of { n
√
p(n)}n≥26 implies the decreasing property.

It should be noted that there is an alternative way to prove the log-convexity of
{ n
√
p(n)}n≥26. Chen, Guo and Wang [3] introduced the notion of a ratio log-convex

sequence and showed that the ratio log-convexity implies the log-convexity under a cer-
tain initial condition. A sequence {an}n≥k is called ratio log-convex if {an+1/an}n≥k is
log-convex, or, equivalently, for n ≥ k + 1,

log an+2 − 3 log an+1 + 3 log an − log an−1 ≥ 0.

Chen et al. [4] showed that that for any r ≥ 1, one can determine a number n(r) such
that for n > n(r), (−1)r−1∆r log p(n) is positive. For r = 3, it can be shown that for
n ≥ 116,

∆3 log p(n− 1) > 0.

Since

∆3 log p(n− 1) = log p(n+ 2)− 3 log p(n+ 1) + 3 log p(n)− log p(n− 1),

we see {p(n)}n≥115 is ratio log-convex. So we are led to the following assertion.

Theorem 1.2 The sequence { n
√
p(n)}n≥26 is log-convex.

Moreover, as pointed out by the referee, we may consider the log-behavior of n
√
p(n)/nα

for any real number α. To this end, we obtain the following generalization of Theorems
1.1 and 1.2.
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Theorem 1.3 Let α be a real number. There exists a positive integer n(α) such that
the sequence { n

√
p(n)/nα}n≥n(α) is log-convex.

We also establish the following inequality on the ratio
n−1
√
p(n−1)

n
√
p(n)

.

Theorem 1.4 For n ≥ 2, we have

n
√
p(n)

n+1
√
p(n+ 1)

(
1 +

3π√
24n5/2

)
>

n−1
√
p(n− 1)
n
√
p(n)

. (1.1)

Desalvo and Pak [5] have shown that the limit of −n 3
2 ∆2 log p(n) is π/

√
24. By

bounding ∆2 log n
√
p(n), we derive the following limit of n

5
2 ∆2 log n

√
p(n):

lim
n→+∞

n
5
2 ∆2 log n

√
p(n) = 3π/

√
24. (1.2)

From the above relation (1.2), it can be seen that the coefficent 3π√
24

in (1.1) is the best
possible.

2 The Log-convexity of r(n)

In this section, we obtain a lower bound of ∆2 log r(n − 1) and prove the log-convexity
of {r(n)}n≥60. First, we follow the approach of Desalvo and Pak to give an expression

of ∆2 log r(n − 1) as a sum of ∆2B̃(n − 1) and ∆2Ẽ(n − 1), where ∆2B̃(n − 1) makes

a major contribution to ∆2 log r(n − 1) with ∆2Ẽ(n − 1) being the error term, that is,

∆2B̃(n−1) converges to ∆2 log r(n−1). The expressions for B(n) and E(n) will be given

later. In this setting, we derive a lower bound of ∆2B̃(n− 1). By Lehmer’s error bound,

we give an upper bound for |∆2Ẽ(n− 1)|. Combining the lower bound for ∆2B̃(n− 1)

and the upper bound for ∆2Ẽ(n−1), we are led to a lower bound for ∆2 log r(n−1). By
proving the positivity of this lower bound for ∆2 log r(n− 1), we reach the log-convexity
of {r(n)}n≥60.

The strict log-convexity of {r(n)}n≥60 can be restated as the following relation for
n ≥ 61

log r(n+ 1) + log r(n− 1)− 2 log r(n) > 0,

that is, for n ≥ 61,
∆2 log r(n− 1) > 0.

For n ≥ 1 and any positive integer N , the Hardy-Ramanujan-Rademacher formula
(see [2, 6, 7, 10]) reads

p(n) =
d

µ2

N∑
k=1

A?k(n)

[(
1− k

µ

)
e
µ
k +

(
1 +

k

µ

)
e−

µ
k

]
+R2(n,N), (2.1)
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where d = π2

6
√
3
, µ(n) = π

6

√
24n− 1, A?k(n) = k−

1
2Ak(n), Ak(n) is a sum of 24th roots

of unity with initial values A1(n) = 1 and A2(n) = (−1)n, R2(n,N) is the remainder.
Lehmer’s error bound (see [8, 9]) for R2(n,N) is given by

|R2(n,N)| < π2N−2/3√
3

[(
N

µ

)3

sinh
µ

N
+

1

6
−
(
N

µ

)2
]
. (2.2)

Let us give an outline of Desalvo and Pak’s approach to proving the log-concavity of
{p(n)}n>25. Setting N = 2 in (2.1), they expressed p(n) as

p(n) = T (n) +R(n), (2.3)

where

T (n) =
d

µ(n)2

[(
1− 1

µ(n)

)
eµ(n) +

(−1)n√
2
e
µ(n)
2

]
, (2.4)

R(n) =
d

µ(n)2

[(
1 +

1

µ(n)

)
e−µ(n) − (−1)n√

2

2

µ(n)
+

(−1)n√
2

(
1 +

2

µ(n)

)
e−

µ(n)
2

]
+R2(n, 2).

(2.5)

They have shown that∣∣∆2 log p(n− 1)−∆2 log T (n− 1)
∣∣ =

∣∣∣∣∆2 log

(
1 +

R(n− 1)

T (n− 1)

)∣∣∣∣ < e
−π
√
2n

10
√
3 (2.6)

and ∣∣∣∣∆2 log T (n− 1)−∆2 log
d

µ(n− 1)2

(
1− 1

µ(n− 1)

)
eµ(n−1)

∣∣∣∣ < e
−π
√
2n

10
√
3 . (2.7)

It follows that ∆2 log d
µ(n−1)2

(
1− 1

µ(n−1)

)
eµ(n−1) converges to ∆2 log p(n − 1). Finally,

they use −∆2 log d
µ(n−1)2

(
1− 1

µ(n−1)

)
eµ(n−1) to estimate −∆2 log p(n−1), leading to the

log-concavity of {p(n)}n>25.

We shall use an alternative decomposition of p(n). Setting N = 2 in (2.1), we can
express p(n) as

p(n) = T̃ (n) + R̃(n), (2.8)

where

T̃ (n) =
d

µ(n)2

(
1− 1

µ(n)

)
eµ(n), (2.9)

R̃(n) =
d

µ(n)2

[(
1 +

1

µ(n)

)
e−µ(n)+

(−1)n√
2

(
1− 2

µ(n)

)
e
µ(n)
2

+
(−1)n√

2

(
1 +

2

µ(n)

)
e−

µ(n)
2

]
+R2(n, 2). (2.10)
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Based on the decomposition (2.8) for p(n), one can express ∆2 log r(n− 1) as follows:

∆2 log r(n− 1) = ∆2B̃(n− 1) + ∆2Ẽ(n− 1), (2.11)

where

B̃(n) =
1

n
log T̃ (n)− 1

n
log n, (2.12)

ỹn = R̃(n)/T̃ (n), (2.13)

Ẽ(n) =
1

n
log(1 + ỹn). (2.14)

The following lemma will be used to derive a lower bound and an upper bound of
∆2B̃(n− 1).

Lemma 2.1 Suppose f(x) has a continuous second derivative for x ∈ [n − 1, n + 1].
Then there exists c ∈ (n− 1, n+ 1) such that

∆2f(n− 1) = f(n+ 1) + f(n− 1)− 2f(n) = f
′′
(c). (2.15)

If f(x) has an increasing second derivative, then

f ′′(n− 1) < ∆2f(n− 1) < f ′′(n+ 1). (2.16)

Conversely, if f(x) has a decreasing second derivative, then

f ′′(n+ 1) < ∆2f(n− 1) < f ′′(n− 1). (2.17)

Proof. Set ϕ(x) = f(x + 1)− f(x). By the mean value theorem, there exists a number
ξ ∈ (n− 1, n) such that

f(n+ 1) + f(n− 1)− 2f(n) = ϕ(n)− ϕ(n− 1) = ϕ
′
(ξ).

Again, applying the mean value theorem to ϕ
′
(ξ), there exists a number θ ∈ (0, 1) such

that

ϕ
′
(ξ) = f ′(ξ + 1)− f ′(ξ) = f

′′
(ξ + θ).

Let c = ξ + θ. Then we get (2.15), which yields (2.16) and (2.17).

In order to find a lower bound for ∆2 log r(n−1) and obtain the limit of n
5
2 ∆2 log n

√
p(n),

we need the following lower and upper bounds for ∆2 1
n−1 log T̃ (n− 1).
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Lemma 2.2 Let

B1(n) =
72π

(n+ 1)(24n+ 23)3/2
− 4 log(µ(n− 1))

(n− 1)3
, (2.18)

B2(n) =
72π

(n− 1)(24n− 25)3/2
− 4 log(µ(n+ 1))

(n+ 1)3
+

5

(n− 1)3
. (2.19)

For n ≥ 40, we have

B1(n) < ∆2 1

n− 1
log T̃ (n− 1) < B2(n). (2.20)

Proof. By the definition (2.9), we may write

log T̃ (n)

n
=

4∑
i=1

fi,

where

f1(n) =
µ(n)

n
,

f2(n) = −3 log µ(n)

n
,

f3(n) =
log(µ(n)− 1)

n
,

f4(n) =
log d

n
.

Thus

∆2 1

n− 1
log T̃ (n− 1) =

4∑
i=1

∆2fi(n− 1). (2.21)

Since

f
′′′

1 (n) =
π

n(24n− 1)3/2

(
−216

n
+

864

24n− 1
+

36

n2
− 1

n3

)
,

we see that for n ≥ 1, f
′′′
1 (n) < 0. Similarly, it can be checked that for n ≥ 4, f

′′′
2 (n) > 0,

f
′′′
3 (n) < 0, and f

′′′
4 (n) > 0. Consequently, for n ≥ 4, f

′′
1 (n) and f

′′
3 (n) are decreasing,

whereas f
′′
2 (n) and f

′′
4 (n) are increasing. Using Lemma 2.1, for each i, we can get a lower

bound and an upper bound for ∆2fi(n − 1) in terms of f
′′
i (n − 1) and f

′′
i (n + 1). For

example,
f
′′

1 (n+ 1) < ∆2f1(n− 1) < f
′′

1 (n− 1).

So, by (2.21) we find that

∆2 1

n− 1
log T̃ (n− 1) > f

′′

1 (n+ 1) + f
′′

2 (n− 1) + f
′′

3 (n+ 1) + f
′′

4 (n− 1), (2.22)
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and

∆2 1

n− 1
log T̃ (n− 1) < f

′′

1 (n− 1) + f
′′

2 (n+ 1) + f
′′

3 (n− 1) + f
′′

4 (n+ 1), (2.23)

where

f
′′

1 (n) =
72π

n(24n− 1)3/2
− 12π

n2(24n− 1)3/2
+

π

3n3(24n− 1)3/2
, (2.24)

f
′′

2 (n) =− 6 log µ(n)

n3
+

72

(24n− 1)n2
+

864

n(24n− 1)2
, (2.25)

f
′′

3 (n) =− 4π2

(µ(n)− 1)2(24n− 1)n
+

2 log(µ(n)− 1)

n3

− 4π

(µ(n)− 1)
√

24n− 1n2
− 24π

(µ(n)− 1)(24n− 1)3/2n
, (2.26)

f
′′

4 (n) =
2 log d

n3
. (2.27)

According to (2.24), one can check that for n ≥ 2,

f
′′

1 (n+ 1) >
72π

(n+ 1)(24n+ 23)3/2
− 12π

(n+ 1)2(24n+ 23)3/2
. (2.28)

An easy computation shows that for n ≥ 3,

µ(n)− 1 >
2

3
µ(n− 2). (2.29)

Substituting (2.29) into (2.26) yields that

f
′′

3 (n+ 1) >
2 log(µ(n+ 1)− 1)

(n+ 1)3
− 540

(24n− 25)2(n− 1)
− 36

(24n− 25)(n− 1)2
. (2.30)

Using (2.25) and (2.30), we find that

f
′′

2 (n− 1) + f
′′

3 (n+ 1)

>
2 log(µ(n+ 1)− 1)

(n+ 1)3
− 6 log(µ(n− 1))

(n− 1)3

+
324

(n− 1)(24n− 25)2
+

36

(n− 1)2(24n− 25)
(2.31)

Apparently, for n ≥ 2,

2

(n+ 1)3
− 2

(n− 1)3
> − 12

(n− 1)4
,
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so that

2 log(µ(n+ 1)− 1)

(n+ 1)3
− 6 log(µ(n− 1))

(n− 1)3

>
2 log(µ(n+ 1)− 1)

(n+ 1)3
− 2 log(µ(n+ 1)− 1)

(n− 1)3
− 4 log(µ(n− 1))

(n− 1)3

> −12 log(µ(n+ 1)− 1)

(n− 1)4
− 4 log(µ(n− 1))

(n− 1)3
. (2.32)

Since, for n ≥ 2,

324

(n− 1)(24n− 25)2
+

36

(n− 1)2(24n− 25)
>

2

(n− 1)3
, (2.33)

utilizing (2.31) and (2.32) yields, for n ≥ 3,

f
′′

2 (n− 1) + f
′′

3 (n+ 1) > −4 log(µ(n− 1))

(n− 1)3
+

2

(n− 1)3
− 12 log(µ(n+ 1)− 1)

(n− 1)4
. (2.34)

Using (2.27), (2.28) and (2.34), we deduce that

f
′′

1 (n+ 1) + f
′′

2 (n− 1) + f
′′

3 (n+ 1) + f
′′

4 (n− 1)−B1(n)

>
2(1 + log d)

(n− 1)3
− 12π

(n+ 1)2(24n+ 23)3/2
− 12 log(µ(n+ 1)− 1)

(n− 1)4
. (2.35)

Let C(n) be the right hand side of (2.35). By (2.22), to prove B1(n) < ∆2 1
n−1 log T̃ (n−1),

it is enough to show that C(n) > 0 when n ≥ 40. Since log x < x for x > 0, for n ≥ 3

µ(n+ 1)− 1 <
π

4

√
24n− 24, (2.36)

we get

− 12 log(µ(n+ 1)− 1)

(n− 1)4
> −12(µ(n+ 1)− 1)

(n− 1)4
> − 3

√
24π

(n− 1)7/2
. (2.37)

Note that for n ≥ 2,

− 12π

(n+ 1)2(24n+ 23)3/2
> −

√
24π

48(n− 1)7/2
. (2.38)

Combining (2.37) and (2.38), we see that for n ≥ 2,

C(n) >
2(1 + log d)

(n− 1)3
− (3 + 1/48)

√
24π

(n− 1)7/2
. (2.39)

It is straightforward to show that the right hand side of (2.39) is positive if n ≥ 490.
For 40 ≤ n ≤ 489, it is routine to check that C(n) > 0, and so C(n) > 0 for n ≥ 40. It
follows from (2.35) that for n ≥ 40,

∆2 1

n− 1
log T̃ (n− 1) > B1(n).
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To derive the upper bound for ∆2 1
n−1 log T̃ (n−1), we obtain the following upper bounds

which can be verified directly. The proofs are omitted. For n ≥ 2,

f
′′

1 (n− 1) <
72π

(n− 1)[24n− 25]3/2
,

f
′′

2 (n+ 1) <− 6 log µ(n+ 1)

(n+ 1)3
+

9

2(n− 1)3
,

f
′′

3 (n− 1) <− 4π2

(µ(n− 1))2(24n− 25)(n− 1)
+

2 log(µ(n− 1))

(n− 1)3

− 4π

µ(n− 1)
√

24n− 25(n− 1)2
− 24π

µ(n− 1)(24n− 25)3/2(n− 1)
,

f
′′

2 (n+ 1) + f
′′

3 (n− 1) <
3

(n− 1)3
+

12 log(µ(n+ 1))

(n− 1)4
− 4 log(µ(n+ 1))

(n+ 1)3
,

f
′′

4 (n+ 1) < 0.

Combining the above upper bounds, we conclude that for n ≥ 40,

f
′′

1 (n− 1) + f
′′

2 (n+ 1) + f
′′

3 (n− 1) + f
′′

4 (n+ 1) < B2(n).

This completes the proof.

The following lemma gives an upper bound for |∆2Ẽ(n− 1)|.

Lemma 2.3 For n ≥ 40,

|∆2Ẽ(n− 1)| < 5

n− 1
e−

π
√
24n−25
18 . (2.40)

Proof. By (2.14), we find that for n ≥ 2,

∆2Ẽ(n− 1) =
1

n− 1
log(1 + ỹn−1) +

1

n+ 1
log(1 + ỹn+1)−

2

n
log(1 + ỹn), (2.41)

where
ỹn = R̃(n)/T̃ (n).

To bound |∆2Ẽ(n− 1)|, it is necessary to bound ỹn. For this purpose, we first consider

R̃(n), as defined by (2.10). Since d < 1 and µ(n) > 2, for n ≥ 1 we have

d

µ(n)2

[(
1+

1

µ(n)

)
e−µ(n)+

(−1)n√
2

(
1− 2

µ(n)

)
e
µ(n)
2 +

(−1)n√
2

(
1+

2

µ(n)

)
e−

µ(n)
2

]
<

1

µ(n)2

(
1+e

µ(n)
2 +1

)
.
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For N = 2 and n ≥ 1, Lehmer’s bound (2.2) reduces to

|R2(n, 2)| < 4

(
1 +

4

µ(n)3
e
µ(n)
2

)
.

By the definition of R̃(n),

|R̃(n)| < 1

µ(n)2

(
1 + e

µ(n)
2 + 1

)
+ 4

(
1 +

4

µ(n)3
e
µ(n)
2

)
< 5 +

9

µ(n)2
e
µ(n)
2 . (2.42)

Recalling the definition (2.9) of T̃ (n), it follows from (2.42) that for n ≥ 1,

|ỹn| <
µ(n)

d(µ(n)− 1)

(
5µ(n)2e−

2µ(n)
3 + 9e−

µ(n)
6

)
e−

µ(n)
3 . (2.43)

Observe that for n ≥ 2, (
5µ(n)2e−

2µ(n)
3 + 9e−

µ(n)
6

)′
< 0, (2.44)

and (
d(µ(n)− 1)

µ(n)

)′
> 0. (2.45)

Since

5µ2(40)e−
2µ(40)

3 + 9e−
µ(40)

6 <
d(µ(40)− 1)

µ(40)
,

using (2.44) and (2.45), we deduce that for n ≥ 40,

5µ2(n)e−
2µ(n)

3 + 9e−
µ(n)
6 <

d(µ(n)− 1)

µ(n)
. (2.46)

Now, it is clear from (2.43) and (2.46) that for n ≥ 40,

|ỹn| < e−
µ(n)
3 . (2.47)

In view of (2.47), for n ≥ 40,

|ỹn| < e−
µ(40)

3 <
1

5
. (2.48)

It is known that log(1 + x) < x for 0 < x < 1 and − log(1 + x) < −x/(1 + x) for
−1 < x < 0. Thus, for |x| < 1,

| log(1 + x)| ≤ |x|
1− |x|

, (2.49)
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see also [5], and so it follows from (2.48) and (2.49) that for n ≥ 40,

| log(1 + ỹn)| ≤ |ỹn|
1− |ỹn|

≤ 5

4
|ỹn|. (2.50)

Because of (2.41), we see that for n ≥ 2,∣∣∣∆2Ẽ(n−1)
∣∣∣ ≤ 1

n−1
|log(1+ỹn−1)|+

1

n+1
|log(1+ỹn+1)|+

2

n
|log(1+ỹn)| . (2.51)

Applying (2.50) to (2.51), we obtain that for n ≥ 40,∣∣∣∆2Ẽ(n− 1)
∣∣∣ ≤ 5

4

(
|ỹn−1|
n− 1

+
|ỹn+1|
n+ 1

+
2|ỹn|
n

)
. (2.52)

Plugging (2.47) into (2.52), we infer that for n ≥ 40,∣∣∣∆2Ẽ(n− 1)
∣∣∣ < 5

4

(
e−

µ(n−1)
3

n− 1
+
e−

µ(n+1)
3

n+ 1
+

2e−
µ(n)
3

n

)
. (2.53)

But 1
n
e−

µ(n)
3 is decreasing for n ≥ 1. It follows from (2.53) that for n ≥ 40,∣∣∣∆2Ẽ(n− 1)

∣∣∣ < 5

n− 1
e−

µ(n−1)
3 .

This proves (2.40).

With the aid of Lemma 2.2 and 2.3, we are ready to prove the log-convexity of
{r(n)}n≥60.

Proof of Theorem 1.1. To prove the strict log-convexity of {r(n)}n≥60, we proceed to
show that for n ≥ 61,

∆2 log r(n− 1) > 0.

Evidently, for n ≥ 40, (
− log n

n

)′′′
> 0.

By Lemma 2.1,

−∆2 log(n− 1)

n− 1
>

(
− log(n− 1)

n− 1

)′′
,

that is,

−∆2 log(n− 1)

n− 1
> −2 log(n− 1)

(n− 1)3
+

3

(n− 1)3
. (2.54)

It follows from (2.12) that

∆2B̃(n− 1) = ∆2 1

n− 1
log T̃ (n− 1)−∆2 log(n− 1)

n− 1
.

11



Applying Lemma 2.2 and (2.54) to the above relation, we deduce that for n ≥ 40,

∆2B̃(n− 1) > B̃1(n)− 2 log(n− 1)

(n− 1)3
+

3

(n− 1)3
,

that is,

∆2B̃(n− 1) >
72π

(n+ 1)(24n+ 23)3/2
− 4 log[µ(n− 1)]

(n− 1)3
− 2 log(n− 1)

(n− 1)3
+

3

(n− 1)3
. (2.55)

By (2.11) and Lemma 2.3, we find that for n ≥ 40,

∆2 log r(n− 1) > ∆2B̃(n− 1)− 5

n− 1
e−

π
√
24n−25
18 . (2.56)

It follows from (2.55) and (2.56) that for n ≥ 40,

∆2 log r(n− 1)

>
72π

(n+ 1)(24n+ 23)3/2
− 4 log[µ(n− 1)]

(n− 1)3
− 2 log(n− 1)

(n− 1)3
+

3

(n− 1)3
− 5

n− 1
e−

π
√
24n−25
18 .

Let D(n) denote the right hand side of the above relation. Clearly, for n ≥ 5505,

72π

(n+ 1)(24n+ 23)3/2
>

3π√
24(n+ 1)5/2

>
1

(n− 1)5/2
. (2.57)

To prove that D(n) > 0 for n ≥ 5505, we wish to show that for n ≥ 5505,

− 4 log[µ(n− 1)]

(n− 1)3
− 2 log(n− 1)

(n− 1)3
+

3

(n− 1)3
− 5

n− 1
e−

π
√
24n−25
18 > − 1

(n− 1)5/2
. (2.58)

Using the fact that for x > 5504, log x < x1/4, we deduce that for n ≥ 5505,

4 log[µ(n− 1)]

(n− 1)3
<

4 4
√
µ(n− 1)

(n− 1)3
<

4 4

√
π
4

√
24n− 24

(n− 1)3
<

6

(n− 1)23/8
, (2.59)

and

2 log(n− 1)

(n− 1)3
<

2(n− 1)1/4

(n− 1)3
<

2

(n− 1)11/4
. (2.60)

Since ex > x6/720 for x > 0, we see that for n ≥ 2,

1

n− 1
e−

π
√
24n−25
18 <

1

n− 1
e−

π
√
23n
18 <

2094

n3(n− 1)
<

2094

(n− 1)4
. (2.61)

Combining (2.59), (2.60) and (2.61), we find that for n ≥ 5505,

− 4 log[µ(n− 1)]

(n− 1)3
− 2 log(n− 1)

(n− 1)3
+

3

(n− 1)3
− 5

n− 1
e−

π
√
24n−25
18

12



> − 6

(n− 1)23/8
− 2

(n− 1)11/4
+

3

(n− 1)3
− 10470

(n− 1)4

> − 6

(n− 1)23/8
− 2

(n− 1)11/4

> − 1

(n− 1)5/2
.

This proves the inequality (2.58). By (2.58) and (2.57), we obtain that D(n) > 0 for
n ≥ 5505. Verifying that ∆2 log r(n− 1) > 0 for 61 ≤ n ≤ 5504 completes the proof.

Clearly, Theorem 1.3 is a generalization as well as a unification of Theorem 1.1 and
1.2. In fact, it can be proved in the same manner as the proof of Theorem 1.1.

Proof of Theorem 1.3. Let α be a real number. When α ≤ 0, it is clear that 1
n√nα is

log-convex. It follows from Theorem 1.2 that n
√
p(n)/nα is log-convex for n ≥ 26.

We now consider the case α > 0. A similar argument to the proof of Theorem 1.1
shows that for n ≥ 40,

∆2 log n−1
√
p(n− 1)/(n− 1)α

= ∆2 1

n− 1
log T (n) + ∆2 1

n− 1
log(1 + yn−1)− α∆2 log(n− 1)

n− 1

>
72π

(n+ 1)(24n+ 23)3/2
− 4 log[µ(n− 1)]

(n− 1)3
− 2α log(n− 1)

(n− 1)3

+
3α

(n− 1)3
− 5

n− 1
e−

π
√
24n−25
18 . (2.62)

It is easy to check that for n ≥ max
{[

3490
α

]
+ 2, 5505

}
,

3α

(n− 1)3
− 5

n− 1
e−

π
√
24n−25
18 >

3α

(n− 1)3
− 10470

(n− 1)4
> 0,

and that for n ≥ max{[(2α + 3)4] + 2, 5505},

−4 log[µ(n− 1)]

(n− 1)3
− 2α log(n− 1)

(n− 1)3
> − 6

(n− 1)23/8
− 2α

(n− 1)11/4
> − 1

(n− 1)5/2
.

Let

n(α) = max

{[
3490

α

]
+ 2, [(2α + 3)4] + 2, 5505

}
.

It can be seen that for n > n(α),

− 4 log[µ(n− 1)]

(n− 1)3
− 2α log(n− 1)

(n− 1)3
+

3α

(n− 1)3
− 5

n− 1
e−

π
√
24n−25
18 > − 1

(n− 1)5/2
. (2.63)

Combing (2.57) and (2.63), we deduce that the right hand side of (2.62) is positive for
n > n(α). So we are led to the log-convexity of the sequence { n

√
p(n)/nα}n≥n(α).
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3 An inequality on the ratio
n−1
√
p(n−1)

n
√
p(n)

In this section, we employ Lemma 2.2 and Lemma 2.3 to find the limit of n
5
2 ∆2 log n

√
p(n).

Then we give an upper bound for ∆2 log n−1
√
p(n− 1). This leads to the inequality (1.1).

Theorem 3.1 Let β = 3π/
√

24. We have

lim
n→+∞

n
5
2 ∆2 log n

√
p(n) = β. (3.1)

Proof. Using (2.8), that is, the N = 2 case of the Hardy-Ramanujan-Rademacher
formula for p(n), we find that

log n
√
p(n) =

1

n
log T̃ (n) +

1

n
log(1 + ỹn),

where T̃ (n) and yn are given by (2.9) and (2.13). By the definition (2.14) of Ẽ(n), we
get

∆2 log n−1
√
p(n− 1) = ∆2 1

n− 1
log T̃ (n− 1) + ∆2Ẽ(n− 1). (3.2)

Applying Lemma 2.2, we get that

lim
n→+∞

(n− 1)
5
2 ∆2 1

n− 1
log T̃ (n− 1) = β. (3.3)

From Lemma 2.3, we get

lim
n→+∞

(n− 1)
5
2 ∆2Ẽ(n− 1) = 0. (3.4)

Using (3.2), (3.3) and (3.4), we deduce that

lim
n→+∞

n
5
2 ∆2 log n

√
p(n) = β,

as required.

To prove Theorem 1.4, we need the following upper bound for ∆2 log n−1
√
p(n− 1).

Theorem 3.2 For n ≥ 2,

∆2 log n−1
√
p(n− 1) <

3π√
24n5/2 + 3π

. (3.5)
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Proof. By the upper bound of ∆2 1
n−1 log T̃ (n− 1) given in Lemma 2.2, the upper bound

of ∆2Ẽ(n− 1) given in Lemma 2.3, and the relation (3.2), we obtain the following upper
bound of ∆2 log n−1

√
p(n− 1) for n ≥ 40:

∆2 log n−1
√
p(n− 1) <

72π

(n− 1)(24n− 25)3/2
+

5

(n− 1)3
−4 log[µ(n+ 1)]

(n+ 1)3
+

5

n− 1
e−

π
√
24n−25
18 .

To prove (3.5), we claim that for n ≥ 2095,

72π

(n− 1)(24n− 25)3/2
+

5

(n− 1)3
− 4 log[µ(n+ 1)]

(n+ 1)3
+

5

n− 1
e−

π
√
24n−25
18 <

3π√
24n5/2 + 3π

.

(3.6)
First, we show that for n ≥ 60,

72π

(n− 1)(24n− 25)3/2
− 3π√

24n5/2 + 3π
<

1

(n− 1)3
. (3.7)

For 0 < x ≤ 1
48

, it can be checked that

1

(1− x)3/2
< 1 +

3

2
x+

3

8
x

3
2 . (3.8)

In the notation β = 3π/
√

24, we have

72π

(n− 1)(24n− 25)3/2
=

β

(n− 1)n3/2(1− 25
24n

)3/2
. (3.9)

Setting x = 25
24n

, we have x ≤ 1
48

for n ≥ 60. Applying (3.8) to the right hand side of
(3.9), we find that for n ≥ 60,

β

(n− 1)n3/2(1− 25
24n

)3/2
<

β

(n− 1)n3/2

[
1 +

75

48n
+

3

8

(
25

24n

) 3
2

]
, (3.10)

so that for n ≥ 60,

72π

(n− 1)[24n− 25]3/2
− 3π√

24n5/2 + 3π

<
β

(n− 1)n3/2
− 3π√

24n5/2 + 3π
+

β

(n− 1)n3/2

[
75

48n
+

3

8

(
25

24n

) 3
2

]
. (3.11)

To prove (3.7), we proceed to show that the right hand side of (3.11) is bounded by
1

(n−1)3 . Noting that for n ≥ 2,

β

(n− 1)n3/2
− 3π√

24n5/2 + 3π
=

β

(n5/2 + β)(n− 1)
+

β2

(n5/2 + β)(n− 1)n3/2
,

15



and using the fact n5/2 + β > (n− 1)5/2, together with n3/2 > (n− 1)3/2, we deduce that

β

(n− 1)n3/2
− 3π√

24n5/2 + 3π
<

β

(n− 1)7/2
+

β

(n− 1)5
. (3.12)

Applying (3.12) to (3.11), we obtain that for n ≥ 60,

72π

(n− 1)[24n− 25]3/2
− 3π√

24n5/2 + 3π

<
β

(n− 1)7/2
+

β2

(n− 1)5
+

β

(n− 1)n3/2

[
75

48n
+

3

8

(
25

24n

) 3
2

]
. (3.13)

Since 75
48n

< 2
n−1 and 3

8

(
25
24n

) 3
2 < 1

(n−1)3/2 for n ≥ 2, it follows from (3.13) that for n ≥ 60,

72π

(n− 1)[24n− 25]3/2
− 3π√

24n5/2 + 3π

<
β

(n− 1)7/2
+

β2

(n− 1)5
+

2β

(n− 1)7/2
+

β

(n− 1)4
.

Using the fact that β < 2, we see that

3β

(n− 1)7/2
+

β2

(n− 1)5
+

β

(n− 1)4
<

6

(n− 1)7/2
+

4

(n− 1)5
+

2

(n− 1)4
. (3.14)

For n ≥ 60, it is easily checked that the right hand side of (3.14) is bounded by 1
(n−1)3 .

This confirms (3.7).

To prove the claim (3.6), it is enough to show that for n ≥ 2095,

1

(n− 1)3
<

4 log[µ(n+ 1)]

(n+ 1)3
− 5

(n− 1)3
− 5

n− 1
e−

π
√
24n−25
18 . (3.15)

From (2.61) it can be seen that for n ≥ 2095,

5

n− 1
e−

π
√
24n−25
18 <

5

(n− 1)3
. (3.16)

Since 4 log[µ(n+ 1)] > 18 for n ≥ 2095, it follows from (3.16) that for n ≥ 2095,

4 log[µ(n+ 1)]

(n+ 1)3
− 5

(n− 1)3
− 5

n− 1
e−

π
√
24n−25
18

>
18

(n+ 1)3
− 10

(n− 1)3
>

1

(n− 1)3
.

So we obtain (3.15). Combining (3.15) and (??), we arrive at (3.6). For 2 ≤ n ≤ 2094,
the inequality (3.5) can be easily checked. This completes the proof.
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We are now in a position to complete the proof of Theorem 1.4.

Proof of Theorem 1.4. It is known that for x > 0,

x

1 + x
< log(1 + x),

so that for n ≥ 1,
3π√

24n5/2 + 3π
< log

(
1 +

3π√
24n5/2

)
.

In light of the above relation, Theorem 3.2 implies that for n ≥ 2,

∆2 log n−1
√
p(n− 1) < log

(
1 +

3π√
24n5/2

)
,

that is,

n+1
√
p(n+ 1) n−1

√
p(n− 1) <

(
1 +

3π√
24n5/2

)
( n
√
p(n))2,

as required.

We remark that β = 3π/
√

24 is the smallest possible number for the inequality in
Theorem 1.4. Suppose that 0 < γ < β. By Theorem 3.1, there exists an integer N such
that for n > N ,

n5/2∆2 log n−1
√
p(n− 1) > γ.

It follows that
∆2 log n−1

√
p(n− 1) >

γ

n5/2
> log

(
1 +

γ

n5/2

)
,

which implies that for n > N ,

n
√
p(n)

n+1
√
p(n+ 1)

(
1 +

γ

n5/2

)
<

n−1
√
p(n− 1)
n
√
p(n)

.
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