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Abstract

Let p(n) denote the partition function and let A be the difference operator re-
spect to n. In this paper, we obtain a lower bound for A%?log "%/p(n —1)/(n — 1),
leading to a proof of the conjecture of Sun on the log-convexity of { {/p(n)/n}n>60-
Using the same argument, it can be shown that for any real number «, there exists
an integer n(a) such that the sequence { {/p(n)/n®},>y(q) is log-convex. More-

over, we show that lim ns A2 log {/p(n) = 3w /+/24. Finally, by finding an upper

n—-+0o

n—1 _
bound of A%log "7\/p(n — 1), we establish an inequality on the ratio %,
p(n
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1 Introduction

The objective of this paper is to study the log-behavior of the sequences {/p(n) and
V/p(n)/n, where p(n) denotes the number of partitions of a nonnegative integer n. A
positive sequence {a,},>¢ is log-convex if it satisfies that for n > 1,

2
a, — p_10np41 <0,
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and it is called log-concave if for n > 1,

2
Ay, — Gp_10p41 > 0.

Let r(n) = {/p(n)/n and let A be the difference operator respect to n. Sun [I1]
conjectured that the sequence {r(n)},>¢0 is log-convex. Desalvo and Pak [5] noticed that
the log-convexity of {r(n)},>¢0 can be derived from an estimate for A?logr(n—1), see [5,
Final Remark 7.7]. They also remarked that their approach to bounding —A? log p(n—1)
does not seem to apply to A?logr(n — 1). In this paper, we obtain a lower bound for
A?logr(n — 1), leading to a proof of the log-convexity of {r(n)},>60-

Theorem 1.1 The sequence {r(n)},>¢0 is log-convez.

The log-convexity of {r(n)},>¢ implies the log-convexity of {{/p(n)},>2, because
the sequence {/n},>4 is log-convex [I1]. It is known that lim {/p(n) = 1. For a

—+o00
combinatorial proof of this fact, see Andrews [I]. Sun [II] proposed the conjecture that

{{/p(n)}n>e is strictly decreasing, which has been proved by Wang and Zhu [12]. The
log-convexity of {{/p(n)}n>26 was also conjectured by Sun [II]. It is easy to see that

the log-convexity of { {/p(n)},>26 implies the decreasing property.

It should be noted that there is an alternative way to prove the log-convexity of
{{/p(n)}n>26. Chen, Guo and Wang [3] introduced the notion of a ratio log-convex
sequence and showed that the ratio log-convexity implies the log-convexity under a cer-
tain initial condition. A sequence {a,},>x is called ratio log-convex if {a,41/a, fn>k 18
log-convex, or, equivalently, for n > k + 1,

log a2 — 3loga, 1 + 3loga, —loga,_1 > 0.

Chen et al. [4] showed that that for any » > 1, one can determine a number n(r) such
that for n > n(r), (=1)""*A"log p(n) is positive. For r = 3, it can be shown that for
n > 116,

A*logp(n —1) > 0.

Since
A*logp(n —1) =logp(n +2) — 3logp(n + 1) + 3logp(n) — log p(n — 1),

we see {p(n)}n>115 is ratio log-convex. So we are led to the following assertion.

Theorem 1.2 The sequence {{/p(n)}n>26 s log-convez.

Moreover, as pointed out by the referee, we may consider the log-behavior of {/p(n)/n®
for any real number «. To this end, we obtain the following generalization of Theorems

1 and .2



Theorem 1.3 Let a be a real number. There exists a positive integer n(a) such that

the sequence { {/p(n)/n}n>n(a) is log-conver.

"={/p(n—1)

We also establish the following inequality on the ratio =
pn

Theorem 1.4 Forn > 2, we have

V/p(n) 3 "Vpn—1)
et T (1+ mnm) Sy i (1.1)

Desalvo and Pak [5] have shown that the limit of —n2A2logp(n) is 7/v/24. By
bounding A?log {/p(n), we derive the following limit of nsA?log {/ p(n):
lim n2A%log {/p(n) = 37/v/24. (1.2)

n—-4o0o

Frombihe above relation ([1.2)), it can be seen that the coefficent 3—% in (1.1) is the best
possible.

2 The Log-convexity of r(n)

In this section, we obtain a lower bound of A%logr(n — 1) and prove the log-convexity
of {r(n)}n>e0. First, we follow the approach of Desalvo and Pak to give an expression

of A?logr(n — 1) as a sum of A2B(n — 1) and A?E(n — 1), where A?B(n — 1) makes
a major contribution to A2logr(n — 1) with A2E(n — 1) being the error term, that is,
A2B(n—1) converges to A2logr(n—1). The expressions for B(n) and E(n) will be given
later. In this setting, we derive a lower bound of A2B(n — 1). By Lehmer’s error bound,
we give an upper bound for lAZE(n —1)|. Combining the lower bound for A2B(n — 1)

and the upper bound for A?2E(n—1), we are led to a lower bound for A%logr(n—1). By
proving the positivity of this lower bound for A?logr(n — 1), we reach the log-convexity

of {r(n) }n>60-

The strict log-convexity of {r(n)},>¢ can be restated as the following relation for
n > 61
logr(n+1)+logr(n—1) —2logr(n) > 0,
that is, for n > 61,
A?logr(n —1) > 0.

For n > 1 and any positive integer N, the Hardy-Ramanujan-Rademacher formula
(see [2, 6], [7, 10]) reads

p(n) = % ﬁ:Agm) {(1 - 5) ek + (1 + 5) e—i} + Ry(n, N), (2.1)

e 1t 1t
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where d = %, p(n) = v24n — 1, Aj(n) = k2 Ay(n), Ap(n) is a sum of 24th roots
of unity with initial values A;(n) = 1 and As(n) = (=1)", Ry(n, N) is the remainder.
Lehmer’s error bound (see [8, 9]) for Ry(n, N) is given by

Ro(n, N)| < ”2%2/3 [(%)3 sinh 24 é - (%)2] | (2.2)

Let us give an outline of Desalvo and Pak’s approach to proving the log-concavity of
{p(n) }n>25. Setting N = 2 in ({2.1)), they expressed p(n) as

p(n) = T(n) + R(n), (2.3)
where
ro =i (4 ) - S o () RQ(: ’52)'
They have shown that ()
|A2log p(n — 1) — A’log T(n — 1)| = ‘AQ log (1 + %) ‘ <A (26)

and

< e TE (2.7)

d 1
A?logT(n —1) — A’log —— (1 _ ) phn—1)
b W=7\ = 1)

It follows that A?log ﬁ (1 — ﬁ) et~ converges to A%logp(n — 1). Finally,

they use —A?log Mn;il)Q <1 — ﬁ) e*"=1) to estimate —AZlog p(n — 1), leading to the

log-concavity of {p(n)},>25.

We shall use an alternative decomposition of p(n). Setting N = 2 in (2.1]), we can
express p(n) as

p(n) = T(n) + R(n), (2.8)
where
Foy = 4 (L e
i) = o (1 ) (29)
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Based on the decomposition ([2.8) for p(n), one can express A?logr(n — 1) as follows:

A?logr(n—1) = A’B(n —1) + A’E(n — 1), (2.11)
where
Bln) = —logT(n) — logn. (2.12)
Un = R(n)/T(n), (2.13)
Bn) = %log(l 7). (2.14)

The following lemma will be used to derive a lower bound and an upper bound of

A?B(n —1).

Lemma 2.1 Suppose f(x) has a continuous second derivative for x € [n — 1,n + 1].
Then there exists ¢ € (n — 1,n + 1) such that

17

A’f(n—1)=f(n+1)+ f(n—1)=2f(n) = [ (c). (2.15)
If f(z) has an increasing second derivative, then
f'in—1) < A?f(n—1) < f"(n+1). (2.16)
Conversely, if f(x) has a decreasing second derivative, then

f'in+1) < A?f(n—1) < f’(n—1). (2.17)

Proof. Set p(z) = f(x 4+ 1) — f(x). By the mean value theorem, there exists a number
¢ € (n—1,n) such that

/

fin+1) + f(n=1) = 2f(n) = ¢(n) —p(n = 1) = ¢ (£).

Again, applying the mean value theorem to ¢ (&), there exists a number 6 € (0,1) such
that

e =FfE+1) - =r(+0).

Let ¢ = &+ 6. Then we get (2.15]), which yields (2.16]) and (2.17)). |

In order to find a lower bound for A2 log (n—1) and obtain the limit of n3 A%log /p(n),
we need the following lower and upper bounds for Azﬁ logT(n —1).



Lemma 2.2 Let
727 4log(pu(n — 1))

B = Dem s w1 (2.18)
B 721 _ 4log(p(n+1)) 5
Ba(n) "~ (n—1)(24n — 25)3/2 (n+1)3 * (n—1)3 (2.19)

For n > 40, we have

Bifn) < A7 ! Slog T(n 1) < Bu(n). (2.20)

Proof. By the definition (2.9)), we may write

logT Zfl,

where
_p(n)
f1<n) - n )
3log p(n)
f2(n) - n )
log(ps(n) — 1)
f3(n) n )
logd
fa(n) -
Thus
A? ! 1long—l ZA2fln—1 (2.21)
n —
Since
f///( ) . T _ﬁ 864 % _ i
1\ = n(24n — 1)3/2 n  2dn—-1 n?2 n?

"

we see that for n > 1, f;" (n) < 0. Similarly, it can be checked that for n > 4, f, (n) > 0,
fs (n) <0, and f,"(n) > 0. Consequently, for n > 4, f/'(n) and f; (n) are decreasing,
whereas f;(n) and f, (n) are increasing. Using Lemma , for each i, we can get a lower
bound and an upper bound for A%f;(n — 1) in terms of f, (n — 1) and f; (n + 1). For
example,

filn+1) <A%fi(n—1) < f{ (n—1).
So, by we find that

A2

L ogT(n—1)> [+ 1)+ [ =1+ filn+ D+ fln=1),  (222)



and

AP logT(n—1) < fi(n=D+ f(n+ 1)+ fn =D+ fi(n+1),  (223)
where
7 7271_ 127T T
= — 2.24
fi(n) n(24n —1)3/2  n2(24n —1)3/2 + 3n3(24n — 1)3/2’ (2.24)
" 6log pu(n) 72 864
= — 2.2
f2() n? Qdn— )2 | n@an— 12 (2.25)
” 47T2 21o n)—1
) = — 2 N g(u(3 )—1)
(u(n) —1)2(24n — 1)n n
B Am B 24 (2.26)
(u(n) —1)v/24n —1n2  (p(n) — 1)(24n — 1)3/2n’ '
” 210gd
n
According to (2.24]), one can check that for n > 2,
" 72w 127
1) > — . 2.28
Lt D) > e an £ 23)72  (n ¥ 1)2(24n £ 23)°72 (2.28)
An easy computation shows that for n > 3,
2
p(n) —1> g,u(n —2). (2.29)
Substituting ([2.29)) into (2.26]) yields that
" 2log(pu(n +1) —1) 540 36
1) > — — . (2.30
Ja(n+1) (n+1)° G2 =1)  @m—mm_nr =30
Using ([2.25)) and ([2.30]), we find that
fo(n=1)+ fy(n+1)
2log(pu(n+1) —1)  Glog(p(n — 1))
(n+1)3 (n—1)3
324 36
+ + (2.31)

(n—1)(24n —25)2  (n — 1)2(24n — 25)
Apparently, for n > 2,
2 2 12

1P (=17 (n—1D




so that
2log(pu(n +1) —1)  Glog(p(n — 1))

(n+1)° (n—1)°
2log(p(n+1) —1)  2log(u(n+1) —1) 4log(u(n —1))
(n+1)3 (n—1)3 (n—1)3
12log(p(n+1) —1)  4log(pu(n —1))
> - EET e (2.32)
Since, for n > 2,
324 36 2
(- D@in—252  (n—12@n-25)  (n- 1 (2.33)
utilizing and yields, for n > 3,
" " 4log(p(n — 1)) 2 12log(p(n+1) — 1)
Using , and , we deduce that
Fn+ 1)+ fn— 1)+ fi(n+ 1)+ £l (n—1) — Bi(n)
2(1 +logd) 127 _ 12log(pu(n+1) —1) (2.35)
(n—1)3  (n+1)2(24n + 23)3/2 (n—1) ' '

Let C(n) be the right hand side of (2.38)). By (2.22)), to prove By(n) < A% log T(n—1),
it is enough to show that C'(n) > 0 when n > 40. Since logz < x for z > 0, for n >3

pn4+1)—1< %\/2471 — 24, (2.36)
we get
_ Rlog(p(n+1)=1)  12u(n+1)—1) 3V (2.37)
(n— 1)1 (n—1)* (n—1)772
Note that for n > 2,
12 24
m __ VUr (2.38)

— > .
(n+ 1)2(24n + 23)372 ~  48(n — 1)7/2
Combining (2.37)) and ([2.38)), we see that for n > 2,

2(1+1logd) (34 1/48)v24n
C — . 2.39
() > =1y (n—1)72 (2.39)
It is straightforward to show that the right hand side of (2.39)) is positive if n > 490.
For 40 < n < 489, it is routine to check that C(n) > 0, and so C(n) > 0 for n > 40. It

follows from ([2.35)) that for n > 40,

A2

7 log T(n — 1) > By(n).



To derive the upper bound for A?—L- log T(n—1), we obtain the following upper bounds
which can be verified directly. The proofs are omitted. For n > 2,

21

filn=1) < (n— 1)[24n — 25/
" 6log u(n +1) 9
f2(n+1)<— (n+1)3 2(n—1)3’
L An? 2log(p(n — 1))
Jaln=1) <= o T @i — ) (n = 1) (n—1)3
At 24m

Cu(n—1)V2dn —25(n— 1) p(n—1)(24n — 25)32(n — 1)’
3 N 12log(p(n +1))  4log(u(n +1))
(n—1) (n—1)4 (n+1)3 7

"

filn+1)<0.

fr(n+1)+ f5(n—1) <

Combining the above upper bounds, we conclude that for n > 40,
filn=1)+f(n+ 1)+ f3(n=1) + fi (n+1) < By(n).

This completes the proof. 1

The following lemma gives an upper bound for |A2E(n — 1)].

Lemma 2.3 Forn > 40,

5 _ m/24n—25

IA2E(n —1)| < —eTw (2.40)

Proof. By (2.14), we find that for n > 2,

A’E(n—1) =

_ 1 - 2 ~
log(1 4 ypn-1) + " log(1 + Yns1) — - log(1 + 9,), (2.41)

n—1 +1

where

U = R(n)/T(n).

To bound |A2E(n — 1)], it is necessary to bound 7,. For this purpose, we first consider
R(n), as defined by ([2.10). Since d < 1 and p(n) > 2, for n > 1 we have

s () ) ()




For N =2 and n > 1, Lehmer’s bound (2.2)) reduces to

4 w(n)
R 2 4114 ——=e 2z |.
| 2(”7 )l < < + /L(’fl)ge ? )

By the definition of R(n),

~ 1 w(n p(n 9 p(n
|R(n)|<W<1+e(2)+1>+4(1—|— 6(2>><5+—62).

Recalling the definition (2.9) of T'(n), it follows from ([2.42) that for n > 1,

p(n)
d(p(n) —1)

~ 2p(n) u(n) _p(n)
‘yn‘ < ) e

<5,u(n)2e_ 5 4+9e” 6 5.

Observe that for n > 2,

and

Since

5112(40)¢ o) | o u0) d(p(40) — 1)7

using (2.44)) and ([2.45), we deduce that for n > 40,

p(n p(n d
5,u2(n)e_2 96" < (u(n)

Now, it is clear from (2.43]) and (2.46) that for n > 40,

p(n)

[Yn| <e” 5.

In view of (2.47)), for n > 40,

- _ p(40) 1
|Un| < €™ 3 <z

It is known that log(l + z) < z for 0 < = < 1 and —log(l + z) < —z/(1 +

—1 <z <0. Thus, for |z| < 1,

21
log(1 <
flog(1+ )] < 7o

10

(2.42)

(2.43)

(2.44)

(2.45)

(2.46)

(2.47)

(2.48)

x) for

(2.49)



see also [5], and so it follows from ([2.48)) and ([2.49) that for n > 40,

~ ol _ 5~
log(1 +7,)| < < Sl

Because of (2.41]), we see that for n > 2,

1 1
log (147
1 Mos(+gn-1)l+—

’A2E(n—1)‘ <
Applying (2.50) to (2.51)), we obtain that for n > 40,

jod ) |gn—1| |gn+1‘ 2|§n|
A’E(n—1 ‘ <= .
‘ (n )_4<n—1+n+1+ n

Plugging ([2.47) into (2.52)), we infer that for n > 40,

~ 5 [ e” elr) e_”(n;l) 26_@
A’E(n—1 ’ < = .
‘ (n ) 4 ( n—1 + n+1 + n )

But te~ "3 is decreasing for n > 1. It follows from (2.53)) that for n > 40,

~ 5 wln—
‘AQE(n— 1)‘ <= 16-7(3 5

This proves (2.40)).

- 2 -
llog(1+yn+1)!+g [log(1+7,)| -

(2.50)

(2.51)

(2.52)

(2.53)

With the aid of Lemma and [2.3] we are ready to prove the log-convexity of

{r(n)}nze0-

Proof of Theorem [1.1 To prove the strict log-convexity of {r(n)},>e0, we proceed to

show that for n > 61,
A?logr(n —1) > 0.

( logn)”/
R > 0.

losto=b (=

n—1 n—1

Evidently, for n > 40,

By Lemma [2.7]

that is,
log(n — 1) 2log(n —1) 3

R (n—13 " (n—1)%

It follows from (2.12)) that

A’B(n—1) = A? !
n

(2.54)



Applying Lemma and ([2.54) to the above relation, we deduce that for n > 40,

2log(n —1) 3
(n—=17  (n=1)%

A?B(n—1) > Bi(n) —

that is,
~ 72 4log[p(n —1)]  2log(n —1) 3
A’B(n—1 - - . (255
(n=1)> (n+1)(24n + 23)3/2 (n—1)3 (n—1)3 * (n—1)3 (2.55)
By (2.11)) and Lemma we find that for n > 40,
~ 5 /TE=TE
A’logr(n—1) > A’B(n—1) — 16—%‘8 (2.56)
n—
It follows from (2.55)) and ([2.56)) that for n > 40,
A?logr(n —1)
- 27 4log[p(n —1)]  2log(n —1) 3 5 _mamem
- - — e 1.
(n+1)(24n + 23)3/2 (n—1)3 (n—1)3 (n—1)2 n-—1
Let D(n) denote the right hand side of the above relation. Clearly, for n > 5505,
2m 3T 1
> > . 2.57
(n+1)(24n +23)3/2 © \/24(n 4+ 1)5/2 = (n —1)>/2 (2.57)
To prove that D(n) > 0 for n > 5505, we wish to show that for n > 5505,
_loglu(n—1)] 2logn—1) 3 5 msmm 15
(n—1)3 (n—1)3 (n—13 n-1 (n —1)5/2
Using the fact that for z > 5504, logz < 2'/4, we deduce that for n > 5505,
4loglu(n —1)] 43/ p(n —1) <44 1v24n — 24 - 6 (2.59)
(n—1)3 (n—1)3 (n—1)3 (n —1)23/8 ’
and
2log(n — 1)  2(n—1)¥4 2
< . 2.60
m—17 = (m—1p = (n—1uA (2.60)
Since e* > x°/720 for z > 0, we see that for n > 2,
1 _ny/2in=25 - 1 VI - 2094 - 2094 (2.61)
e : :
n—1° n—1 ndn—1)  (n—1)*
Combining (2.59), (2.60) and (2.61)), we find that for n > 5505,
_ 4log[p(n —1)]  2log(n —1) 3.5 N
(n—1)3 (n—1)3 (n—1)3 n-1
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6 2 3 10470
> — - +

(n—1)2/8 (n—1"W* (n—1)32% (n—1)*
6 2
= _(n —1)2/8 - (n— 1)1/
1
> NCEE

This proves the inequality (2.58). By (2.58) and (2.57), we obtain that D(n) > 0 for
n > 5505. Verifying that A%logr(n — 1) > 0 for 61 < n < 5504 completes the proof. 1

Clearly, Theorem [1.3]is a generalization as well as a unification of Theorem [I.1] and
In fact, it can be proved in the same manner as the proof of Theorem [I.1]

Proof of Theorem n Let o be a real number. When a < 0, it is clear that 7\1/1?& is

log-convex. It follows from Theorem |1.2 that {/p(n)/n® is log-convex for n > 26.

We now consider the case a@ > 0. A similar argument to the proof of Theorem
shows that for n > 40,

A?log “/pln— 1)/ (n — 1)°

1 1 log(n — 1)
= A? logT A? log(1 4+ yp_1) — aA* =2~
——logT(n) + A% ——log(1 + yn—1) — @A™ ——
- 27 _ 4loglu(n —1)]  2alog(n —1)
(n + 1)(24n + 23)3/2 (n—1)3 (n—1)3
I B (2.62)

(n—1)3% n-—1

It is easy to check that for n > max { [%} + 2, 5505},

3a 5 N - 3o 10470 -0
—_ e 1 J—
n—1)3 n-1 (n—1)3 (n—1)* ’

and that for n > max{[(2« + 3)*] + 2,5505},

_dloglp(n —1)]  2alog(n—1) 6 B 2 B 1
(n—1)3 m—1P7 ~ m-—1BF (a—DUA~  (n_1pr2
Let
n(a) = max { [%} +2,[(2a + 3)"] + 2, 5505} .

It can be seen that for n > n(«),

4loglpu(n —1)]  2alog(n —1) 3a 5  romem 1
a - - . (2.
(n—1)3 (n— 1)3 + 1P n— e > e (2.63)

Combing (2.57) and (2.63), we deduce that the right hand side of (2.62) is positive for

n > n(a). So we are led to the log-convexity of the sequence {{/p(n)/n®},>n(a)- |

13



"=3/p(n—1)

3 An inequality on the ratio — =
p\n

In this section, we employ Lemma and Lemmato find the limit of n2 A2 log {/p(n).
Then we give an upper bound for A?log "%/p(n — 1). This leads to the inequality (1.1]).

Theorem 3.1 Let 8 = 3%/@. We have

lim n2A%log {/p(n) = 8. (3.1)

n——+00

Proof. Using (12.8)), that is, the N = 2 case of the Hardy-Ramanujan-Rademacher
formula for p(n), we find that

1 ~
log {/p( logT —log(1 + ¥n),
4
where T'(n) and y, are given by (2.9) and (2.13). By the definition (2.14) of E(n), we
get
A?log "V/p(n —1) =

Applying Lemma [2.2] we get that

il log T(n — 1) + A2E(n — 1). (3.2)

5 1 ~
li —1)2A? logT(n—1) = 3. :
Jim (n—1)2A%——logT(n —1) = § (3:3)
From Lemma 2.3] we get

lim (n—1)2A%E(n—1) = 0. (3.4)

n—-+o0o

Using (3.2)), (3.3) and (3.4)), we deduce that
lim n3A2 log \/p

n——+oo
as required. 1

To prove Theorem , we need the following upper bound for A%log "+/p(n — 1).

Theorem 3.2 Forn > 2,

A?lo pn—1) < ————— 3.5
g n5/2+37r (3:5)
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Proof. By the upper bound of Azﬁ log f(n —1) given in Lemma the upper bound
of A2F (n—1) given in Lemma and the relation (3.2), we obtain the following upper
bound of A?log "+/p(n — 1) for n > 40:

~ 727 5 4log[p(n + 1)] 5 _xymmass
A’log "/p(n —1 - A
A o s Yoy T 7l Sy i s L

To prove (3.5)), we claim that for n > 2095,

27 N 5  Aloglu(n+1)] N 5 oIV 3
(n —1)(24n — 25)3/2  (n—1)3 (n+1)3 n—1 V2452 + 37
(3.6)
First, we show that for n > 60,
2 3m 1
— < : 3.7
(n—1)(24n —25)%2 /24052 + 3xr  (n—1)3 37
For 0 <z < ﬁ, it can be checked that
1 3 3 3
In the notation 5 = 37 /+/24, we have
72
u - b (3.9)

(n—1)(24n — 25)32 ~ (n— 1)n3/2(1 — 25)3/2°

Setting * = 2>, we have x < % for n > 60. Applying (3.8)) to the right hand side of

24n7

(3.9), we find that for n > 60,

3
B B D 3 ( 252
1+ —+ = = 1
(n—1)n3/2(1 — 22)3/2 = (n — 1)n?/? T T8\ 2 ’ (3.10)

so that for n > 60,

721 3
(n—1)[24n — 25]3/2 V24n5/2 + 31

3

3 3 3 75 3/25\?
< — - — . 3.11
(n—1)n32  \/24n5/2 + 31 * (n — 1)n3/2 | 48n + 8 \ 24n ( )

To prove (3.7), we proceed to show that the right hand side of (3.11)) is bounded by

ﬁ‘ Noting that for n > 2,

B 3 B B 32
(n— D2 i 3z P+ B)n—1) | (2 + B)(n — D2’
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and using the fact n®/2 4+ 3 > (n — 1)%2, together with n3/2 > (n —1)3/2, we deduce that
I5; 3T 8 s

— < . 3.12
(n—1)n%2  \/24n5/2 + 3xr ~ (n—1)7/? + (n—1)° (3.12)
Applying (3.12) to (3.11)), we obtain that for n > 60,
2 3
(n — 1)[24n — 25]3/2 \/ﬂng’/Q + 37
3
3 32 3 75 3/25\?
- — . 3.13
S0 Ty T |18 T \am (313)
Since 12 < 2y and 3 (2)% < L for n > 2, it follows from (B.I3) that for n > 60,
2m 37
(n —1)[24n — 25]3/2  \/24n5/2 + 37
s B 26 s
R 7R P s R e s 7 o TR
Using the fact that g < 2, we see that
3 2 6 4 2
b P b + (3.14)

=72 —1p =13 (=172 (n=1p (-

For n > 60, it is easily checked that the right hand side of (3.14]) is bounded by ﬁ
This confirms ({3.7)).

To prove the claim (3.6)), it is enough to show that for n > 2095,

1 4log[p(n + 1)] 5 5 _avema—3
— — . 1
=1~ m+1)P  (m=1p n=1° (3.15)

From ([2.61)) it can be seen that for n > 2095,

5 _ mV/24n—25 < 5
18 .
n—1° (n—1)3

(3.16)

Since 4 log[u(n + 1)] > 18 for n > 2095, it follows from (3.16)) that for n > 2095,

dloglp(n+1)] 5 5 [~ TS
(n+1)3 (n—1)3 n-1
18 10 1

Tr 1P m—1P (1P

So we obtain (3.15). Combining (3.15) and (??), we arrive at (3.6). For 2 < n < 2094,
the inequality (3.5 can be easily checked. This completes the proof. |
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We are now in a position to complete the proof of Theorem [I.4]

Proof of Theorem[1.4 It is known that for z > 0,

X
7 Zlog(1 + 1),
Ty < loe(l+2)

so that for n > 1,
3T

3
—_—<log |1+ ——— .
V24n5/2 + 37 & ( vV 24n5/2)

In light of the above relation, Theorem [3.2] implies that for n > 2,

A?log "/p(n —1) < log <1—|—
\/_ 5/2
that is,
_ 3 .
YD V1 < (14 ) (V)
as required. ]

We remark that § = 37/v/24 is the smallest possible number for the inequality in
Theorem [I.4 Suppose that 0 < v < §. By Theorem [3.1] there exists an integer N such

that for n > N,
n®2A2log "/p(n — 1) >

2 g
Aflog "/p(n—1) 5/2>log<1—|r 5/2)

It follows that

which implies that for n > N,

V(11 2) < Vol =1)

/p(n+1 Y p(n)
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