W.Y.C. Chen, D.D.M. Sang and D.Y.H. Shi,
An overpartition analogue of Bressoud's theorem of Rogers-Ramanujan-Gordon type,
Ramanujan J. 36(1-2) (2015) 69-80.

Cited by

  1. C. Ballantine and R. Bielak Combinatorial proofs of two Euler-type identities due to Andrews, Ann. Combin. 23 (2019) 511–525.

  2. T.Y. He, K.Q. Ji and A.X.H. Zhao, Overpartitions and Bressoud's conjecture, I, arXiv:1910.08224.

  3. T.Y. He, A.Y.F. Wang and A.X.H. Zhao, The Bressoud-Göllnitz-Gordon theorem for overpartitions of even moduli, Taiwanese J. Math. 21(6) (2017) 1233-1263.

  4. S. Kanade, K. Kurşungöz and M. Russell, An open problem of Corteel, Lovejoy, and Mallet, In: Analytic Number Theory, Modular Forms and q-Hypergeometric Series, 343-370, Springer Proc. Math. Stat. 221, Springer, Cham, 2017.

  5. S. Kanade, D. Nandi, M.C. Russell, A variant of IdentityFinder and some new identities of Rogers–Ramanujan–MacMahon type, Ann. Comb. 23(3-4) (2019) 807-834.

  6. S. Kanade and M. Russell, On a dual and an overpartition generalization of a family of identities of Andrews, arXiv:1703.04715.

  7. K. Kurşungöz, Andrews style partition identities, Ramanujan J. 36 (2015) 249-265.

  8. K. Kurşungöz, Bressoud style identities for regular partitions and overpartitions, J. Number Theory 168 (2016) 45-63.

  9. D.D.M. Sang and D.Y.H. Shi, An Andrews–Gordon type identity for overpartitions, Ramanujan J. 37 (2015) 653-679.

  10. D.D.M. Sang and D.Y.H. Shi, Congruences modulo 4 for Rogers-Ramanujan-Gordon type, arXiv:1712.08930.

  11. D.D.M. Sang and D.Y.H. Shi, Parity Considerations in Rogers-Ramanujan-Gordon Type Overpartitions, arXiv:1801.01642.

  12. D.D.M. Sang, D.Y.H. Shi and Ae JaYee, Parity considerations in Rogers–Ramanujan–Gordon type overpartitions, J. Number Theory 215 (2020) 297-320.