# Proof of the Andrews-Dyson-Rhoades Conjecture on the spt-Crank 

William Y.C. Chen ${ }^{1}$, Kathy Q. Ji ${ }^{2}$ and Wenston J.T. Zang ${ }^{3}$<br>${ }^{1,2,3}$ Center for Combinatorics, LPMC-TJKLC<br>Nankai University, Tianjin 300071, P.R. China<br>${ }^{1}$ Center for Applied Mathematics<br>Tianjin University, Tianjin 300072, P. R. China<br>${ }^{1}$ chen@nankai.edu.cn, ${ }^{2}$ ji@nankai.edu.cn, ${ }^{3}$ wenston@mail.nankai.edu.cn


#### Abstract

The spt-crank of a vector partition, or an $S$-partition, was introduced by Andrews, Garvan and Liang. Let $N_{S}(m, n)$ denote the net number of $S$-partitions of $n$ with spt-crank $m$, that is, the number of $S$-partitions $\left(\pi_{1}, \pi_{2}, \pi_{3}\right)$ of $n$ with spt-crank $m$ such that the length of $\pi_{1}$ is odd minus the number of $S$-partitions $\left(\pi_{1}, \pi_{2}, \pi_{3}\right)$ of $n$ with spt-crank $m$ such that the length of $\pi_{1}$ is even. Andrews, Dyson and Rhoades conjectured that $\left\{N_{S}(m, n)\right\}_{m}$ is unimodal for any $n$, and they showed that this conjecture is equivalent to an inequality between the rank and crank of ordinary partitions. They obtained an asymptotic formula for the difference between the rank and crank of ordinary partitions, which implies $N_{S}(m, n) \geq N_{S}(m+1, n)$ for sufficiently large $n$ and fixed $m$. In this paper, we introduce a representation of an ordinary partition, called the $m$-Durfee rectangle symbol, which is a rectangular generalization of the Durfee symbol introduced by Andrews. We give a proof of the conjecture of Andrews, Dyson and Rhoades. For $m \geq 1$, we construct an injection from the set of ordinary partitions of $n$ such that $m$ appears in the rank-set to the set of ordinary partitions of $n$ with rank not less than $-m$. For $m=0$, we need to construct three more injections. We also show that this conjecture implies an inequality between the positive rank and crank moments obtained by Andrews, Chan and Kim.


Keywords: Rank, crank, spt-crank, Andrews' spt-function, rank moment, crank moment.

AMS Classifications: 05A17, 11P82, 11P83.

## 1 Introduction

In this paper, we give a proof of a conjecture of Andrews, Dyson and Rhoades on the spt-crank of a vector partition or an $S$-partition. The spt-function, called the smallest part function, was introduced by Andrews [2]. More precisely, we use $\operatorname{spt}(n)$ to denote the total number of smallest parts in all partitions of $n$. For example, we have $\operatorname{spt}(3)=5$,
$\operatorname{spt}(4)=10$ and $\operatorname{spt}(5)=14$. The smallest part function possesses many arithmetic properties analogous to the ordinary partition function, see, for example, $[2,13,15,18]$.

Andrews [2] showed that the spt-function satisfies the following Ramanujan type congruences:

$$
\begin{align*}
\operatorname{spt}(5 n+4) & \equiv 0 \quad(\bmod 5)  \tag{1.1}\\
\operatorname{spt}(7 n+5) & \equiv 0 \quad(\bmod 7)  \tag{1.2}\\
\operatorname{spt}(13 n+6) & \equiv 0 \quad(\bmod 13) \tag{1.3}
\end{align*}
$$

To give combinatorial interpretations of the above congruences, Andrews, Garvan and Liang [6] introduced the spt-crank of an $S$-partition. Let $\mathcal{D}$ denote the set of partitions into distinct parts and $\mathcal{P}$ denote the set of partitions. For $\pi \in \mathcal{P}$, we use $s(\pi)$ to denote the smallest part of $\pi$ with the convention that $s(\emptyset)=+\infty$. Let $\ell(\pi)$ denote the number of parts of $\pi$ and $|\pi|$ denote the sum of parts of $\pi$. Define

$$
S=\left\{\left(\pi_{1}, \pi_{2}, \pi_{3}\right) \in \mathcal{D} \times \mathcal{P} \times \mathcal{P}: \pi_{1} \neq \emptyset \text { and } s\left(\pi_{1}\right) \leq \min \left\{s\left(\pi_{2}\right), s\left(\pi_{3}\right)\right\}\right\}
$$

A triple $\left(\pi_{1}, \pi_{2}, \pi_{3}\right)$ of partitions in $S$ is called an $S$-partition, see Andrews, Garvan and Liang [6]. Moreover, if $\left|\pi_{1}\right|+\left|\pi_{2}\right|+\left|\pi_{3}\right|=n$, then $\left(\pi_{1}, \pi_{2}, \pi_{3}\right)$ is called an $S$-partition of $n$. The spt-crank of an $S$-partition $\pi=\left(\pi_{1}, \pi_{2}, \pi_{3}\right)$, denoted $r(\pi)$, is defined to be the difference between the number of parts of $\pi_{2}$ and $\pi_{3}$, that is,

$$
r(\pi)=\ell\left(\pi_{2}\right)-\ell\left(\pi_{3}\right)
$$

For an $S$-partition $\pi=\left(\pi_{1}, \pi_{2}, \pi_{3}\right)$, we associate it with a $\operatorname{sign} \omega(\pi)=(-1)^{\ell\left(\pi_{1}\right)-1}$ and let $|\pi|$ denote the sum of parts of $\pi_{1}, \pi_{2}$ and $\pi_{3}$, that is, $|\pi|=\left|\pi_{1}\right|+\left|\pi_{2}\right|+\left|\pi_{3}\right|$. Let $N_{S}(m, n)$ denote the net number of $S$-partitions of $n$ with spt-crank $m$, that is,

$$
\begin{equation*}
N_{S}(m, n)=\sum_{\substack{|\pi|=n \\ r(\pi)=m}} \omega(\pi) \tag{1.4}
\end{equation*}
$$

and

$$
N_{S}(m, t, n)=\sum_{k \equiv m} N_{(\bmod t)} N_{S}(k, n)
$$

Andrews, Garvan and Liang [6] established the following relations:

$$
\begin{aligned}
& N_{S}(k, 5,5 n+4)=\frac{\operatorname{spt}(5 n+4)}{5}, \quad \text { for } 0 \leq k \leq 4 \\
& N_{S}(k, 7,7 n+5)=\frac{\operatorname{spt}(7 n+5)}{7}, \quad \text { for } \quad 0 \leq k \leq 6
\end{aligned}
$$

which imply the spt-congruences (1.1) and (1.2) respectively.
The following conjecture was posed by Andrews, Dyson and Rhoades [4].

Conjecture 1.1. For $m \geq 0$ and $n \geq 0$, we have

$$
\begin{equation*}
N_{S}(m, n) \geq N_{S}(m+1, n) \tag{1.5}
\end{equation*}
$$

Andrews, Dyson and Rhoades [4] showed that this conjecture is equivalent to an inequality between the rank and crank of ordinary partitions. Recall that the rank of an ordinary partition was introduced by Dyson [10] as the largest part of the partition minus the number of parts. The crank of an ordinary partition was defined by Andrews and Garvan [5] as the largest part if the partition contains no ones, otherwise as the number of parts larger than the number of ones minus the number of ones.

Andrews, Dyson and Rhoades [4] found the following connection between inequality (1.5) on $N_{S}(m, n)$ and an inequality on the rank and crank for ordinary partitions, as will be stated in (1.9).

Theorem 1.2. Let $N(m, n)$ denote the number of partitions of $n$ with rank $m$ and $M(m, n)$ denote the number of partitions of $n$ with crank $m$. Set

$$
M(0,1)=-1, \quad M(-1,1)=M(1,1)=1, \quad M(m, 1)=0
$$

and define

$$
\begin{align*}
& N_{\leq m}(n)=\sum_{|r| \leq m} N(r, n),  \tag{1.6}\\
& M_{\leq m}(n)=\sum_{|r| \leq m} M(r, n) . \tag{1.7}
\end{align*}
$$

Then for $m \geq 0$ and $n>1$, we have

$$
\begin{equation*}
N_{S}(m, n)-N_{S}(m+1, n)=\frac{1}{2}\left(N_{\leq m}(n)-M_{\leq m}(n)\right) \tag{1.8}
\end{equation*}
$$

It is clear from (1.8) that Conjecture 1.1 is equivalent to the following conjecture.
Conjecture 1.3. For $m \geq 0$ and $n \geq 0$, we have

$$
\begin{equation*}
N_{\leq m}(n) \geq M_{\leq m}(n) \tag{1.9}
\end{equation*}
$$

When $m=0$, inequality (1.9) was conjectured by Kaavya [17]. Andrews, Dyson and Rhoades [4] obtained the following asymptotic formula for $N_{\leq m}(n)-M_{\leq m}(n)$, which implies that Conjecture 1.3 holds for fixed $m$ and sufficiently large $n$.

Theorem 1.4. For each $m \geq 0$, we have

$$
\begin{equation*}
\left(N_{\leq m}(n)-M_{\leq m}(n)\right) \sim \frac{(2 m+1) \pi^{2}}{192 \sqrt{3} n^{2}} \exp \left(\pi \sqrt{\frac{2 n}{3}}\right) \tag{1.10}
\end{equation*}
$$

as $n \rightarrow \infty$.

The main objective of this paper is to give a proof of Conjecture 1.3. It is easy to check that Conjecture 1.3 holds for $n=0$ and $n=1$. To prove Conjecture 1.3 holds for $n>1$, we first give a reformulation of Conjecture 1.3 in terms of the rank-set. We then give an injective proof of the equivalent inequality.

Let $\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{\ell}\right)$ be an ordinary partition. Recall that the rank-set of $\lambda$ introduced by Dyson [12] is an infinite sequence

$$
\left[-\lambda_{1}, 1-\lambda_{2}, \ldots, j-\lambda_{j+1}, \ldots, \ell-1-\lambda_{\ell}, \ell, \ell+1, \ldots\right]
$$

For example, the rank-set of $\lambda=(5,5,4,3,1)$ is $[-5,-4,-2,0,3,5,6,7,8, \ldots]$.
Dyson [12] also introduced the number of partitions $\lambda$ of $n$ such that $m$ appears in the rank-set of $\lambda$, denoted by $q(m, n)$. For example, there are three partitions of 4 whose rank-set contains the element 1 :

$$
(4), \quad(2,1,1), \quad(1,1,1,1) .
$$

So we have $q(1,4)=3$.
Dyson [12] established a connection between the number $q(m, n)$ and the number of partitions of $n$ with a bounded crank. To be more specific, let $M(\leq m, n)$ denote the number of partitions of $n$ with crank not greater than $m$. Dyson [12] obtained the following relation for $n>1$,

$$
\begin{equation*}
M(\leq m, n)=q(m, n) \tag{1.11}
\end{equation*}
$$

see also Berkovich and Garvan [8]. Moreover, Dyson [11,12] proved the following symmetries of $N(m, n)$ and $M(m, n)$ :

$$
\begin{align*}
& N(m, n)=N(-m, n)  \tag{1.12}\\
& M(m, n)=M(-m, n) \tag{1.13}
\end{align*}
$$

Using relations $(1.11),(1.12)$ and (1.13), we are led to the following connection between $N_{\leq m}(n)-M_{\leq m}(n)$ and $p(-m, n)-q(m, n)$, where $p(-m, n)$ stands for the number of partitions of $n$ with rank not less than $-m$.

Theorem 1.5. For $m \geq 0$ and $n>1$, we have

$$
\begin{equation*}
N_{\leq m}(n)-M_{\leq m}(n)=2(p(-m, n)-q(m, n)) \tag{1.14}
\end{equation*}
$$

It is clear from (1.14) that Conjecture 1.3 is equivalent to the following assertion.
Theorem 1.6. For $m \geq 0$ and $n \geq 1$, we have

$$
\begin{equation*}
q(m, n) \leq p(-m, n) \tag{1.15}
\end{equation*}
$$

To prove the above theorem, we first introduce a representation of an ordinary partition, called the $m$-Durfee rectangle symbol, which is a generalization of the Durfee symbol introduced by Andrews [1]. Using this representation, we give characterizations of partitions counted by $q(m, n)$ and $p(-m, n)$. We then construct an injection from the set of partitions of $n$ such that $m$ appears in the rank-set to the set of partitions of $n$ with rank not less than $-m$.

We also note that Conjecture 1.3 implies the following inequality between the positive rank moments $\bar{N}_{k}(n)$ and the positive crank moments $\bar{M}_{k}(n)$ obtained by Andrews, Chan and Kim [3], where

$$
\begin{align*}
& \bar{N}_{k}(n)=\sum_{m=1}^{+\infty} m^{k} N(m, n)  \tag{1.16}\\
& \bar{M}_{k}(n)=\sum_{m=1}^{+\infty} m^{k} M(m, n) \tag{1.17}
\end{align*}
$$

Theorem 1.7. ([3]) For $k \geq 1$ and $n \geq 1$, we have

$$
\begin{equation*}
\bar{M}_{k}(n)>\bar{N}_{k}(n) . \tag{1.18}
\end{equation*}
$$

Bringmann and Mahlburg [9] proved that the above inequality (1.18) holds for any fixed positive integer $k$ and sufficiently large $n$ by deriving the following asymptotic formula for $\bar{M}_{k}(n)-\bar{N}_{k}(n)$.

Theorem 1.8. For $k \geq 1$, we have

$$
\begin{equation*}
\bar{M}_{k}(n)-\bar{N}_{k}(n) \sim k!\zeta(k-2)\left(1-2^{3-k}\right) \frac{6^{\frac{k-1}{2}}}{4 \sqrt{3} \pi^{k-1}} n^{\frac{k}{2}-\frac{3}{2}} \exp \left(\pi \sqrt{\frac{2 n}{3}}\right) \tag{1.19}
\end{equation*}
$$

as $n \rightarrow \infty$, where $\zeta(s)$ denotes the Riemann $\zeta$-function.

When $k$ is even, inequality (1.18) is equivalent to an inequality of Garvan on the ordinary rank moments $N_{k}(n)$ and the ordinary crank moments $M_{k}(n)$ introduced by Atkin and Garvan [7]. For $k \geq 1$ and $n \geq 1$, Garvan [14] proved that

$$
\begin{equation*}
M_{2 k}(n)>N_{2 k}(n) \tag{1.20}
\end{equation*}
$$

where

$$
\begin{aligned}
& N_{k}(n)=\sum_{m=-\infty}^{+\infty} m^{k} N(m, n), \\
& M_{k}(n)=\sum_{m=-\infty}^{+\infty} m^{k} M(m, n) .
\end{aligned}
$$

This paper is organized as follows. In Section 2, we give a proof of Theorem 1.5. By Theorem 1.5, we see that Conjecture 1.3 is equivalent to Theorem 1.6. In Section 3 , we define $m$-Durfee rectangle symbols and give characterizations of partitions counted by $q(m, n)$ and $p(-m, n)$. In Section 4, we present an injective proof of Theorem 1.6 for the case $m \geq 1$. To this end, we build an injection from the set of partitions counted by $q(m, n)$ to the set of partitions counted by $p(-m, n)$. We divide the set of partitions counted by $q(m, n)$ into six disjoint subsets $Q_{i}(m, n)(1 \leq i \leq 6)$ and divide the set of partitions counted by $p(-m, n)$ into eight disjoint subsets $P_{i}(-m, n)(1 \leq i \leq 8)$. The injection consists of six injections $\phi_{i}$ from the set $Q_{i}(m, n)$ to the set $P_{i}(-m, n)$, where $1 \leq i \leq 6$. In Section 5, we provide a proof of Theorem 1.6 for the case $m=0$. It turns out that the case $m=0$ is not simpler than the general case $m \geq 1$. The injections $\phi_{1}, \phi_{2}, \phi_{3}, \phi_{4}$ in Section 4 also apply to the sets $Q_{i}(0, n)$, where $1 \leq i \leq 4$. We further divide $Q_{5}(0, n) \cup Q_{6}(0, n)$ into five disjoint subsets $\bar{Q}_{i}(0, n)(1 \leq i \leq 5)$ and divide $P_{5}(0, n) \cup P_{6}(0, n)$ into three disjoint subsets $\bar{P}_{i}(0, n)(1 \leq i \leq 3)$. In addition to the two injections $\phi_{5}$ and $\phi_{6}$, we need three more injections. In Section 6, we demonstrate that Theorem 1.7 of Andrews, Chan and Kim can be deduced from Conjecture 1.3.

## 2 Proof of Theorem 1.5

In this section, we give a proof of relation (1.14) between $N_{\leq m}(n)-M_{\leq m}(n)$ and $p(-m, n)-$ $q(m, n)$.
Proof of Theorem 1.5. Since

$$
N_{\leq m}(n)=\sum_{r=-m}^{m} N(r, n)
$$

and

$$
p(-m, n)=\sum_{r=-m}^{+\infty} N(r, n)
$$

we get

$$
N_{\leq m}(n)=p(-m, n)-\sum_{r=-\infty}^{+\infty} N(r, n)+\sum_{r=-\infty}^{m} N(r, n)
$$

But

$$
\begin{equation*}
\sum_{r=-\infty}^{+\infty} N(r, n)=p(n) \tag{2.1}
\end{equation*}
$$

so we have

$$
\begin{equation*}
N_{\leq m}(n)=p(-m, n)-p(n)+\sum_{r=-\infty}^{m} N(r, n) . \tag{2.2}
\end{equation*}
$$

Replacing $r$ by $-r$ in the summation on the right-hand side of (2.2), and using the symmetry $N(m, n)=N(-m, n)$ in (1.12), we arrive at

$$
\begin{equation*}
\sum_{r=-\infty}^{m} N(r, n)=\sum_{r=-m}^{+\infty} N(-r, n)=\sum_{r=-m}^{+\infty} N(r, n)=p(-m, n) \tag{2.3}
\end{equation*}
$$

Substituting (2.3) into (2.2), we obtain

$$
\begin{equation*}
N_{\leq m}(n)=2 p(-m, n)-p(n) . \tag{2.4}
\end{equation*}
$$

Similarly, for $n>1$ we get

$$
\begin{equation*}
M_{\leq m}(n)=2 q(m, n)-p(n) \tag{2.5}
\end{equation*}
$$

Subtracting (2.5) from (2.4) gives (1.14). This completes the proof.

## 3 The $m$-Durfee rectangle symbol

In this section, we define $m$-Durfee rectangle symbols and give characterizations of partitions counted by $q(m, n)$ and $p(-m, n)$.

Let $\lambda$ be a partition. The $m$-Durfee rectangle of $\lambda$ is defined to be the largest $(m+j) \times j$ rectangle contained in the Ferrers diagram of $\lambda$, see Gordon and Houten [16]. An $m$-Durfee rectangle is referred to as a Durfee square when $m=0$. The $m$-Durfee rectangle symbol of $\lambda$ is defined as

$$
(\alpha, \beta)_{(m+j) \times j}=\left(\begin{array}{cccc}
\alpha_{1}, & \alpha_{2}, & \ldots, & \alpha_{s}  \tag{3.1}\\
\beta_{1}, & \beta_{2}, & \ldots, & \beta_{t}
\end{array}\right)_{(m+j) \times j}
$$

where $(m+j) \times j$ is the $m$-Durfee rectangle of the Ferrers diagram of $\lambda$ and $\alpha$ consists of columns to the right of the $m$-Durfee rectangle and $\beta$ consists of rows below the $m$ Durfee rectangle, see Figure 3.1. Clearly, we have $m+j \geq \alpha_{1} \geq \alpha_{2} \geq \cdots \geq \alpha_{s}$, $j \geq \beta_{1} \geq \beta_{2} \geq \cdots \geq \beta_{t}$ and

$$
|\lambda|=\sum_{i=1}^{s} \alpha_{i}+\sum_{i=1}^{t} \beta_{i}+j(m+j) .
$$

For example, the 2-Durfee rectangle symbol of $\lambda=(7,7,6,4,3,3,2,2,2)$ in Figure 3.1 is

$$
\left(\begin{array}{llll}
4, & 3, & 3, & 2 \\
3, & 2, & 2, & 2
\end{array}\right)_{5 \times 3}
$$



Figure 3.1: The 2-Durfee rectangle symbol of $\lambda=(7,7,6,4,3,3,2,2,2)$.
Notice that for a partition $\lambda$ with $\ell(\lambda) \leq m$, there is no $m$-Durfee rectangle. In this case, we adopt a convention that the $m$-Durfee rectangle of $\lambda$ is empty, that is, $j=0$, and so the $m$-Durfee rectangle symbol is $\left(\lambda^{\prime}, \emptyset\right)_{m \times 0}$, where $\lambda^{\prime}$ is the conjugate of $\lambda$. For example, the 3-Durfee rectangle symbol of $\lambda=(5,5,1)$ is

$$
(3,2,2,2,2)_{3 \times 0}
$$

It should be noted that when $m=0$, a $m$-Durfee rectangle symbol takes the following form

$$
(\alpha, \beta)_{j \times j}=\left(\begin{array}{cccc}
\alpha_{1}, & \alpha_{2}, & \ldots, & \alpha_{s}  \tag{3.2}\\
\beta_{1}, & \beta_{2}, & \ldots, & \beta_{t}
\end{array}\right)_{j \times j}
$$

which is a Durfee symbol, see Andrews [1]. In the notation of Andrews, a $D \times D$ Durfee square is simply denoted by $D$, as shown below

$$
(\alpha, \beta)_{D}=\left(\begin{array}{cccc}
\alpha_{1}, & \alpha_{2}, & \ldots, & \alpha_{s}  \tag{3.3}\\
\beta_{1}, & \beta_{2}, & \ldots, & \beta_{t}
\end{array}\right)_{D}
$$

For example, the Durfee symbol of $\lambda=(7,7,6,4,3,3,2,2,2)$ in Figure 3.2 is

$$
(\alpha, \beta)_{D}=\left(\begin{array}{lllll}
3, & 3, & 2 \\
3, & 3, & 2, & 2, & 2
\end{array}\right)_{4}
$$

The following two properties will be used in the next section to describe partitions counted by $q(m, n)$ and $p(-m, n)$.

Proposition 3.1. Let $\lambda$ be a partition and $(\alpha, \beta)_{(m+j) \times j}$ be the $m$-Durfee rectangle symbol of $\lambda$. Then $m$ appears in the rank-set of $\lambda$ if and only if either $j=0$ or $j \geq 1$ and $\beta_{1}=j$.


Figure 3.2: The Durfee symbol of $\lambda=(7,7,6,4,3,3,2,2,2)$.

Proof. We first show that if $m$ appears in the rank-set of $\lambda$, then either $j=0$ or $j \geq 1$ and $\beta_{1}=j$. Assume that $m$ appears in the rank-set of $\lambda$. By definition, there exists an integer $k \geq 0$, such that $k-\lambda_{k+1}=m$. Obviously, $k \geq m$. Consider the following two cases.

Case 1: $k=m$. Clearly, $\lambda_{m+1}$ is equal to zero, which implies that $\ell(\lambda) \leq m$. So we have $j=0$.

Case 2: $k>m$. We have $\lambda_{k+1}=k-m \geq 1$. Let $\lambda=(\alpha, \beta)_{(m+j) \times j}$. We claim that $j=k-m$. Notice that $\lambda_{k} \geq \lambda_{k+1}=k-m$ and $\lambda_{k+1}=k-m<k+1-m$. By definition, the $m$-Durfee rectangle of $\lambda$ is equal to $k \times(k-m)$. This yields $j=k-m \geq 1$, so that the claim is verified. Hence we have $\beta_{1}=\lambda_{k+1}=k-m=j$.

We next show that if $j=0$ or $j \geq 1$ and $\beta_{1}=j$, then $m$ appears in the rank-set of $\lambda$. Case 1: $j=0$. In this case, we have $\ell(\lambda) \leq m$, which implies that $\lambda_{m+1}=0$. Thus, $m-\lambda_{m+1}=m$. So $m$ appears in the rank-set of $\lambda$.
Case 2: $j \geq 1$ and $\beta_{1}=j$. By definition, we have $\lambda_{m+j+1}=\beta_{1}=j$. Hence $j+m-$ $\lambda_{j+m+1}=j+m-j=m$. In other words, $m$ appears in the rank-set of $\lambda$. This completes the proof.

Proposition 3.2. Let $\lambda$ be a partition and $(\alpha, \beta)_{(m+j) \times j}$ be the $m$-Durfee rectangle symbol of $\lambda$. Then the rank of $\lambda$ is not less than $-m$ if and only if either $j=0$ or $j \geq 1$ and $\ell(\beta) \leq \ell(\alpha)$.

Proof. First, we assume that the rank of $\lambda$ is not less than $-m$, that is, $\lambda_{1}-\ell(\lambda) \geq-m$. We aim to show that either $j=0$ or $j \geq 1$ and $\ell(\beta) \leq \ell(\alpha)$. There are two following cases:

Case 1: $\ell(\lambda) \leq m$. By definition, it is clear that $j=0$.

Case 2: $\ell(\lambda) \geq m+1$. By definition, we have $j \geq 1, \lambda_{1}=j+\ell(\alpha)$ and $\ell(\lambda)=j+m+\ell(\beta)$. Hence

$$
\lambda_{1}-\ell(\lambda)=(j+\ell(\alpha))-(j+m+\ell(\beta))=-m+(\ell(\alpha)-\ell(\beta))
$$

Since $\lambda_{1}-\ell(\lambda) \geq-m$, we deduce that $\ell(\beta) \leq \ell(\alpha)$.
Conversely, we assume that $j=0$ or $j \geq 1$ and $\ell(\beta) \leq \ell(\alpha)$. We claim that the rank of $\lambda$ is not less than $-m$.
Case 1: $j=0$. Clearly, we have $\ell(\lambda) \leq m$, which implies that the rank of $\lambda$ is not less than $-m$.
Case 2: $j \geq 1$ and $\ell(\beta) \leq \ell(\alpha)$. By definition, we have $\lambda_{1}=j+\ell(\alpha)$ and $\ell(\lambda)=$ $j+m+\ell(\beta)$. Hence

$$
\begin{equation*}
\lambda_{1}-\ell(\lambda)=(j+\ell(\alpha))-(j+m+\ell(\beta))=-m+(\ell(\alpha)-\ell(\beta)) . \tag{3.4}
\end{equation*}
$$

Note that $\ell(\alpha)-\ell(\beta) \geq 0$. From (3.4), we deduce that $\lambda_{1}-\ell(\lambda) \geq-m$, and so the claim is proved.

## 4 Proof of Theorem 1.6 for $m \geq 1$

Let $Q(m, n)$ denote the set of partitions $\lambda$ of $n$ such that $m$ appears in the rank-set of $\lambda$ and $P(-m, n)$ denote the set of partitions of $n$ with rank not less than $-m$. Theorem 1.6 is equivalent to the following combinatorial statement.

Theorem 4.1. For $m \geq 0$, there is an injection $\Phi$ from the set $Q(m, n)$ to the set $P(-m, n)$.

In this section, we give a proof of Theorem 4.1 for $m \geq 1$, and hence Theorem 1.6 holds for $m \geq 1$. The proof of Theorem 4.1 for the case $m=0$ will be given in the next section since it relies on the injections for the case $m \geq 1$.

To establish an injection $\Phi$ from the set $Q(m, n)$ to the set $P(-m, n)$, we divide $Q(m, n)$ into six disjoint subsets $Q_{i}(m, n)(1 \leq i \leq 6)$ and divide $P(-m, n)$ into eight disjoint subsets $P_{i}(-m, n)(1 \leq i \leq 8)$. We proceed to construct six injections $\phi_{i}$ from $Q_{i}(m, n)$ to $P_{i}(-m, n)$, where $1 \leq i \leq 6$. Notice that the injections $\phi_{1}, \phi_{2}, \phi_{3}$ and $\phi_{4}$ hold for $m \geq 0$, and the injections $\phi_{5}$ and $\phi_{6}$ hold only for $m \geq 1$. In fact, the injections $\phi_{1}, \phi_{2}, \phi_{3}$ and $\phi_{4}$ are needed in the construction of the injection $\Phi$ for the case $m=0$.

To divide $Q(m, n)$ into six classes, let $\lambda$ be a partition in $Q(m, n)$ and let $(\alpha, \beta)_{(m+j) \times j}$ be the $m$-Durfee rectangle symbol of $\lambda$. Write

$$
\lambda=\binom{\alpha}{\beta}_{(m+j) \times j}
$$

that is, we also consider the $m$-Durfee rectangle symbol as a partition in $Q(m, n)$. By Proposition 3.1, we see that either $j=0$ or $\beta_{1}=j$ with $j \geq 1$. The subsets $Q_{i}(m, n)$ can be described by using the $m$-Durfee rectangle symbol $(\alpha, \beta)_{(m+j) \times j}$.
(1) $Q_{1}(m, n)$ is the set of $m$-Durfee rectangle symbols in $Q(m, n)$ for which one of the following conditions holds:
(i) $j=0$;
(ii) $j \geq 1$ and $\ell(\beta)-\ell(\alpha) \leq-1$;
(iii) $j \geq 1, \ell(\beta)-\ell(\alpha)=0$ and $\alpha_{1}=m+j$;
(2) $Q_{2}(m, n)$ is the set of $m$-Durfee rectangle symbols in $Q(m, n)$ such that $j \geq 1$, $\ell(\beta)-\ell(\alpha) \geq 0$ and $\alpha_{1}<m+j ;$
(3) $Q_{3}(m, n)$ is the set of $m$-Durfee rectangle symbols in $Q(m, n)$ such that $j \geq 1$, $\ell(\beta)-\ell(\alpha) \geq 1, \alpha_{1}=m+j$ and $s(\beta)=1 ;$
(4) $Q_{4}(m, n)$ is the set of $m$-Durfee rectangle symbols in $Q(m, n)$ such that $j \geq 1$, $\ell(\beta)-\ell(\alpha) \geq 1, \alpha_{1}=m+j>\alpha_{2}$ and $s(\beta) \geq 2 ;$
(5) $Q_{5}(m, n)$ is the set of $m$-Durfee rectangle symbols in $Q(m, n)$ such that $j \geq 1$, $\ell(\beta)-\ell(\alpha) \geq 1, \alpha_{1}=\alpha_{2}=m+j>\alpha_{3}$ and $s(\beta) \geq 2 ;$
(6) $Q_{6}(m, n)$ is the set of $m$-Durfee rectangle symbols in $Q(m, n)$ such that $j \geq 1$, $\ell(\beta)-\ell(\alpha) \geq 1, \alpha_{1}=\alpha_{2}=\alpha_{3}=m+j$ and $s(\beta) \geq 2$.

To divide the set $P(-m, n)$ into eight classes, we also view $P(-m, n)$ as the set of $m$-Durfee rectangle symbols of partitions counted by $p(-m, n)$. Let $(\gamma, \delta)_{\left(m+j^{\prime}\right) \times j^{\prime}}$ be the $m$-Durfee rectangle symbol of a partition $\mu$ in $P(-m, n)$. By Proposition 3.2, we have either $j^{\prime}=0$ or $j^{\prime} \geq 1$ and $\ell(\delta)-\ell(\gamma) \leq 0$. The subsets $P_{i}(-m, n)$ can be described as follows.
(1) $P_{1}(-m, n)$ is the set of $m$-Durfee rectangle symbols in $P(-m, n)$ for which one of the following conditions holds:
(i) $j^{\prime}=0$;
(ii) $j^{\prime} \geq 1, \ell(\delta)-\ell(\gamma) \leq-1$ and $\delta_{1}=j^{\prime}$;
(iii) $j^{\prime} \geq 1, \ell(\gamma)=\ell(\delta), \gamma_{1}=m+j^{\prime}$ and $\delta_{1}=j^{\prime}$;
(2) $P_{2}(-m, n)$ is the set of $m$-Durfee rectangle symbols in $P(-m, n)$ with $j^{\prime} \geq 1$ and $\delta_{1}=j^{\prime}-1 ;$
(3) $P_{3}(-m, n)$ is the set of $m$-Durfee rectangle symbols in $P(-m, n)$ with $j^{\prime} \geq 2$ and $\delta_{1} \leq j^{\prime}-2 ;$
(4) $P_{4}(-m, n)$ is the set of $m$-Durfee rectangle symbols in $P(-m, n)$ such that $j^{\prime} \geq 1$, $\ell(\gamma)=\ell(\delta), \gamma_{1}=m+j^{\prime}-1, \delta_{1}=j^{\prime}$ and $\delta$ has a part equal to 2 ;
(5) $P_{5}(-m, n)$ is the set of $m$-Durfee rectangle symbols in $P(-m, n)$ such that $j^{\prime} \geq 1$, $\ell(\gamma)=\ell(\delta), \gamma_{1} \leq m+j^{\prime}-3$ and $\delta_{1}=j^{\prime} ;$
(6) $P_{6}(-m, n)$ is the set of $m$-Durfee rectangle symbols in $P(-m, n)$ such that $j^{\prime} \geq 1$, $\ell(\gamma)=\ell(\delta), \gamma_{1}=m+j^{\prime}-2$ and $\delta_{1}=j^{\prime} ;$
(7) $P_{7}(-m, n)$ is the set of $m$-Durfee rectangle symbols in $P(-m, n)$ such that $j^{\prime} \geq 1$, $\ell(\gamma)=\ell(\delta), \gamma_{1}=m+j^{\prime}-1>\gamma_{2}, \delta_{1}=j^{\prime}$ and $\delta$ has no parts equal to 2 ;
(8) $P_{8}(-m, n)$ is the set of $m$-Durfee rectangle symbols in $P(-m, n)$ such that $j^{\prime} \geq 1$, $\ell(\gamma)=\ell(\delta), \gamma_{1}=\gamma_{2}=m+j^{\prime}-1, \delta_{1}=j^{\prime}$ and $\delta$ has no parts equal to 2 .

We are now ready to present the six injections $\phi_{i}$ from $Q_{i}(m, n)$ to $P_{i}(-m, n)$, where $1 \leq i \leq 6$. It is clear that $Q_{1}(m, n)$ coincides with $P_{1}(-m, n)$, so that $\phi_{1}$ can be set to the identity map. The following lemma gives an injection from $Q_{2}(m, n)$ to $P_{2}(-m, n)$.
Lemma 4.2. For $m \geq 0$, there is an injection $\phi_{2}$ from $Q_{2}(m, n)$ to $P_{2}(-m, n)$.
Proof. Let

$$
\lambda=\binom{\alpha}{\beta}_{(m+j) \times j}=\left(\begin{array}{cccc}
\alpha_{1}, & \alpha_{2}, & \ldots, & \alpha_{s} \\
\beta_{1}, & \beta_{2}, & \ldots, & \beta_{t}
\end{array}\right)_{(m+j) \times j}
$$

be an $m$-Durfee rectangle symbol in $Q_{2}(m, n)$. By definition, we have $\beta_{1}=j \geq 1$, $\alpha_{1}<m+j$ and $t-s \geq 0$.

Define

$$
\phi_{2}(\lambda)=\binom{\gamma}{\delta}_{\left(m+j^{\prime}\right) \times j^{\prime}}=\left(\begin{array}{ccccc}
\alpha_{1}+1, & \alpha_{2}+1, & \ldots, & \alpha_{s}+1, & 1^{t-s} \\
\beta_{1}-1, & \beta_{2}-1, & \ldots, & \beta_{t}-1
\end{array}\right)_{(m+j) \times j}
$$

It is evident that $\ell(\delta) \leq t$ and $\ell(\gamma)=t$, so that $\ell(\delta)-\ell(\gamma) \leq 0$. Moreover it is easy to see that $\delta_{1}=j-1$ and $\left|\phi_{2}(\lambda)\right|=|\lambda|$. Hence $\phi_{2}(\lambda)$ is in $P_{2}(-m, n)$.

To prove that the map $\phi_{2}$ is an injection, let

$$
H(m, n)=\left\{\phi_{2}(\lambda): \lambda \in Q_{2}(m, n)\right\} .
$$

It is easy to check that for $n \neq m+1, H(m, n)=P_{2}(-m, n)$, and for $n=m+1$, we have

$$
H(m, n)=P_{2}(-m, n) \backslash\left\{(\emptyset, \emptyset)_{(m+1) \times 1}\right\} .
$$

Let

$$
\mu=\binom{\gamma}{\delta}_{\left(m+j^{\prime}\right) \times j^{\prime}}=\left(\begin{array}{llll}
\gamma_{1}, & \gamma_{2}, & \ldots, & \gamma_{s^{\prime}} \\
\delta_{1}, & \delta_{2}, & \ldots, & \delta_{t^{\prime}}
\end{array}\right)_{\left(m+j^{\prime}\right) \times j^{\prime}}
$$

be an $m$-Durfee rectangle symbol in $H(m, n)$. Since $\mu \in P_{2}(-m, n)$, we have $s^{\prime} \geq t^{\prime}$. Define $\sigma(\mu)$ to be

$$
\sigma(\mu)=\left(\begin{array}{llll}
\gamma_{1}-1, & \gamma_{2}-1, & \ldots, & \gamma_{s^{\prime}}-1 \\
\delta_{1}+1, & \delta_{2}+1, & \ldots, & \delta_{t^{\prime}}+1, \\
1^{s^{\prime}-t^{\prime}}
\end{array}\right)_{\left(m+j^{\prime}\right) \times j^{\prime}}
$$

It can be verified $\sigma(\mu)$ is in $Q_{2}(m, n)$ and $\sigma\left(\phi_{2}(\lambda)\right)=\lambda$ for any $\lambda$ in $Q_{2}(m, n)$. Hence the $\operatorname{map} \phi_{2}$ is a bijection between $Q_{2}(m, n)$ and $H(m, n)$.

For example, for $m=2$ and $n=31$, let

$$
\lambda=\left(\begin{array}{cccc}
4, & 2, & 2 & \\
3, & 2, & 2, & 1
\end{array}\right)_{5 \times 3}
$$

be a 2-Durfee rectangle symbol in $Q_{2}(2,31)$. Applying the map $\phi_{2}$ to $\lambda$, we obtain

$$
\phi_{2}(\lambda)=\left(\begin{array}{cccc}
5, & 3, & 3, & 1 \\
2, & 1, & 1
\end{array}\right)_{5 \times 3}
$$

which is a 2-Durfee rectangle symbol in $P_{2}(-2,31)$. Applying $\sigma$ to $\phi_{2}(\lambda)$, we recover $\lambda$, that is, $\sigma\left(\phi_{2}(\lambda)\right)=\lambda$.

Lemma 4.3. For $m \geq 0$, there is a bijection $\phi_{3}$ between $Q_{3}(m, n)$ and $P_{3}(-m, n)$.
Proof. Let

$$
\lambda=\binom{\alpha}{\beta}_{(m+j) \times j}=\left(\begin{array}{cccc}
\alpha_{1}, & \alpha_{2}, & \ldots, & \alpha_{s} \\
\beta_{1}, & \beta_{2}, & \ldots, & \beta_{t}
\end{array}\right)_{(m+j) \times j}
$$

be an $m$-Durfee rectangle symbol in $Q_{3}(m, n)$. By definition, we have $j=\beta_{1} \geq \beta_{t}=1$, $\alpha_{1}=m+j$ and $t-s \geq 1$.

Define

$$
\phi_{3}(\lambda)=\binom{\gamma}{\delta}_{\left(m+j^{\prime}\right) \times j^{\prime}}=\left(\begin{array}{cccc}
\alpha_{2}+1, & \ldots, & \alpha_{s}+1, & 1^{t-s-1} \\
\beta_{2}-1, & \ldots, & \beta_{t}-1 &
\end{array}\right)_{(m+j+1) \times(j+1)}
$$

To prove that $\phi_{3}(\lambda) \in P_{3}(-m, n)$, we proceed to verify that $\gamma_{1} \leq m+j^{\prime}, \delta_{1} \leq j^{\prime}-2$, $\ell(\delta)-\ell(\gamma) \leq 0$ and $|\lambda|=\left|\phi_{3}(\lambda)\right|$. First, it is easy to see that

$$
\gamma_{1}=\alpha_{2}+1 \leq m+j+1=m+j^{\prime}
$$

and

$$
\delta_{1}=\beta_{2}-1 \leq j-1 \leq j^{\prime}-2 .
$$

By definition, $\ell(\gamma)=t-2$ and $\ell(\delta) \leq t-2$ for $\beta_{t}=1$. Hence $\ell(\delta)-\ell(\gamma) \leq 0$.

Note that

$$
\left|\phi_{3}(\lambda)\right|=|\gamma|+|\delta|+(j+1)(m+j+1) .
$$

But

$$
\begin{aligned}
|\gamma|+|\delta| & =\left(|\alpha|-\alpha_{1}+t-2\right)+\left(|\beta|-\beta_{1}-(t-1)\right) \\
& =|\alpha|+|\beta|-(m+j)-j-1
\end{aligned}
$$

we find that

$$
\begin{aligned}
\left|\phi_{3}(\lambda)\right| & =|\alpha|+|\beta|-(m+j)-1-j+(j+1)(m+j+1) \\
& =|\alpha|+|\beta|+j(m+j),
\end{aligned}
$$

which equals $|\lambda|$. Hence $\phi_{3}(\lambda) \in P_{3}(-m, n)$. To show that $\phi_{3}$ is a bijection, we construct the inverse map $\zeta$ of $\phi_{3}$. Let

$$
\mu=\binom{\gamma}{\delta}_{\left(m+j^{\prime}\right) \times j^{\prime}}=\left(\begin{array}{llll}
\gamma_{1}, & \gamma_{2}, & \ldots, & \gamma_{s^{\prime}} \\
\delta_{1}, & \delta_{2}, & \ldots, & \delta_{t^{\prime}}
\end{array}\right)_{\left(m+j^{\prime}\right) \times j^{\prime}}
$$

be an $m$-Durfee rectangle symbol in $P_{3}(-m, n)$. Since $\mu \in P_{3}(-m, n)$, we have $s^{\prime} \geq t^{\prime}$, $j^{\prime} \geq 2$ and $\delta_{1} \leq j^{\prime}-2$. Define $\zeta(\mu)$ to be

$$
\zeta(\mu)=\left(\begin{array}{ccccc}
m+j^{\prime}-1, & \gamma_{1}-1, & \gamma_{2}-1, & \ldots, & \gamma_{s^{\prime}}-1 \\
j^{\prime}-1, & \delta_{1}+1, & \delta_{2}+1, & \ldots, & \delta_{t^{\prime}}+1, \\
1^{s^{\prime}-t^{\prime}+1}
\end{array}\right)_{\left(m+j^{\prime}-1\right) \times\left(j^{\prime}-1\right)}
$$

It is easy to check that $\zeta(\mu)$ is in $Q_{3}(m, n)$ and $\zeta$ is the inverse map of $\phi_{3}$. So we conclude that $\phi_{3}$ is a bijection.

For example, for $m=2$ and $n=34$, let

$$
\lambda=\left(\begin{array}{llll}
5, & 4, & 1 & \\
3, & 3, & 2, & 1
\end{array}\right)_{5 \times 3}
$$

be a 2-Durfee rectangle symbol in $Q_{3}(2,34)$. Applying the bijection $\phi_{3}$ to $\lambda$, we get

$$
\phi_{3}(\lambda)=\left(\begin{array}{ll}
5, & 2 \\
2, & 1
\end{array}\right)_{6 \times 4}
$$

which is in $P_{3}(-2,34)$. Applying $\zeta$ to $\phi_{3}(\lambda)$ we recover $\lambda$.
The following proposition will be used in the construction of the injection $\phi_{4}$.

Proposition 4.4. For $m \geq 0$, let

$$
\lambda=\binom{\alpha}{\beta}_{(m+j) \times j}=\left(\begin{array}{cccc}
\alpha_{1}, & \alpha_{2}, & \ldots, & \alpha_{s} \\
\beta_{1}, & \beta_{2}, & \ldots, & \beta_{t}
\end{array}\right)_{(m+j) \times j}
$$

be an $m$-Durfee rectangle symbol in $Q_{4}(m, n)$. Then there exists an integer $1 \leq k \leq s$ such that

$$
\begin{equation*}
\alpha_{k+1} \leq \beta_{k}-1 \tag{4.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\alpha_{k} \geq \beta_{k+1}-1 \tag{4.2}
\end{equation*}
$$

Proof. By the definition of $Q_{4}(m, n)$, we have $j=\beta_{1} \geq \beta_{t} \geq 2, m+j=\alpha_{1}>\alpha_{2}$ and $t-s \geq 1$. When $m=0$, we may choose $k=1$, since

$$
\alpha_{2} \leq j-1=\beta_{1}-1
$$

and

$$
\alpha_{1}=j>\beta_{2}-1 .
$$

When $m \geq 1$, let

$$
h=\min \left\{i: 1 \leq i \leq t, \alpha_{i} \leq \beta_{i}-1\right\} .
$$

Setting $k=h-1$, we proceed to show that $1 \leq k \leq s$ and relations (4.1) and (4.2) hold. Since $\beta_{t} \geq 2, \alpha_{s+1}=0$ and $t \geq s+1$, we have $\alpha_{s+1} \leq \beta_{s+1}-1$, which implies that $h \leq s+1$, that is, $k \leq s$. Observing that $\alpha_{1}=j+m>j-1=\beta_{1}-1$, we get $h \geq 2$, that is, $k \geq 1$. Thus, we have $1 \leq k \leq s$. By the definition of $h$, we find that

$$
\alpha_{h} \leq \beta_{h}-1
$$

and

$$
\alpha_{h-1}>\beta_{h-1}-1 .
$$

It follows that

$$
\alpha_{h} \leq \beta_{h}-1 \leq \beta_{h-1}-1
$$

and

$$
\alpha_{h-1}>\beta_{h-1}-1 \geq \beta_{h}-1
$$

which implies that $k=h-1$. This completes the proof.
Lemma 4.5. For $m \geq 0$, there is an injection $\phi_{4}$ from $Q_{4}(m, n)$ to $P_{4}(-m, n)$.
Proof. We first construct a map $\phi_{4}$ from $Q_{4}(m, n)$ to $P_{4}(-m, n)$, then we show that it is an injection. Let

$$
\lambda=\binom{\alpha}{\beta}_{(m+j) \times j}=\left(\begin{array}{cccc}
\alpha_{1}, & \alpha_{2}, & \ldots, & \alpha_{s} \\
\beta_{1}, & \beta_{2}, & \ldots, & \beta_{t}
\end{array}\right)_{(m+j) \times j}
$$

be an $m$-Durfee rectangle symbol in $Q_{4}(m, n)$. By Proposition 4.4, we may choose $k$ to be the minimum integer such that $1 \leq k \leq s, \alpha_{k+1} \leq \beta_{k}-1$ and $\alpha_{k} \geq \beta_{k+1}-1$. By the definition of $Q_{4}(m, n)$, we have $j=\beta_{1} \geq \beta_{t} \geq 2, m+j=\alpha_{1}>\alpha_{2}$ and $t-s \geq 1$. So we may define

$$
\begin{align*}
\phi_{4}(\lambda) & =\binom{\gamma}{\delta}_{\left(m+j^{\prime}\right) \times j^{\prime}} \\
& =\left(\begin{array}{ccccccc}
\alpha_{1}-1, & \alpha_{2}, & \ldots, & \alpha_{k}, & \beta_{k+1}-1, & \ldots, & \beta_{t}-1 \\
\beta_{1}, & \beta_{2}, & \ldots, & \beta_{k}, & \alpha_{k+1}+1, & \ldots, & \alpha_{s}+1, \\
2, & 1^{t-s-1}
\end{array}\right)_{(m+j) \times j} \tag{4.3}
\end{align*}
$$

Apparently, $\gamma_{1}=\alpha_{1}-1=j^{\prime}+m-1, \delta_{1}=\beta_{1}=j^{\prime}=j, \ell(\gamma)=\ell(\delta)=t$ and $\delta_{s+1}=$ 2. Furthermore, it can be easily checked that $\left|\phi_{4}(\lambda)\right|=|\lambda|$. This yields that $\phi_{4}(\lambda) \in$ $P_{4}(-m, n)$.

To prove that $\phi_{4}$ is an injection, let

$$
I(m, n)=\left\{\phi_{4}(\lambda): \lambda \in Q_{4}(m, n)\right\}
$$

be the set of images of $\phi_{4}$, which has been shown to be a subset of $P_{4}(-m, n)$. We wish to show that the construction of $\phi_{4}$ is reversible, which implies that $\phi_{4}$ is an injection. More precisely, we shall show that there exists a map $\varphi$ from $I(m, n)$ to $Q_{4}(m, n)$ such that for any $\lambda$ in $Q_{4}(m, n)$ we have

$$
\varphi\left(\phi_{4}(\lambda)\right)=\lambda
$$

We now describe the map $\varphi$. Let

$$
\mu=\binom{\gamma}{\delta}_{\left(m+j^{\prime}\right) \times j^{\prime}}=\left(\begin{array}{llll}
\gamma_{1}, & \gamma_{2}, & \ldots, & \gamma_{t^{\prime}}  \tag{4.4}\\
\delta_{1}, & \delta_{2}, & \ldots, & \delta_{t^{\prime}}
\end{array}\right)_{\left(m+j^{\prime}\right) \times j^{\prime}}
$$

be an $m$-Durfee rectangle symbol in $I(m, n)$. The following procedure generates an $m$ Durfee rectangle symbol $\varphi(\mu)$ in $Q_{4}(m, n)$.

We claim that for $\mu \in I(m, n)$ given by (4.4), there exists an integer $k^{\prime}$ such that $1 \leq k^{\prime} \leq \ell(\gamma)-1$ and

$$
\begin{equation*}
\delta_{k^{\prime}}-1 \geq \gamma_{k^{\prime}+1}, \quad \gamma_{k^{\prime}} \geq \delta_{k^{\prime}+1}-1 \geq 1 \tag{4.5}
\end{equation*}
$$

Since $\mu \in I(m, n)$, there exists $\lambda \in Q_{4}(m, n)$ such that $\phi_{4}(\lambda)=\mu$. By the choice of $k$ in the construction $\phi_{4}(\lambda)$, we see that

$$
1 \leq k \leq s \leq t-1=\ell(\gamma)-1
$$

Again, from the construction (4.3) of $\phi_{4}(\lambda)$, we find that

$$
\delta_{k} \geq \gamma_{k+1}+1
$$

and

$$
\gamma_{k} \geq \delta_{k+1}-1 \geq 1
$$

So $k$ satisfies the conditions in (4.5). Thus the claim is verified.
Now, we may choose $k^{\prime}$ to be the minimum integer such that $1 \leq k^{\prime} \leq \ell(\gamma)-1, \delta_{k^{\prime}}-1 \geq$ $\gamma_{k^{\prime}+1}$ and $\gamma_{k^{\prime}} \geq \delta_{k^{\prime}+1}-1 \geq 1$. Since $\mu$ is in $P_{4}(-m, n)$, the partition $\delta$ in the $m$-Durfee rectangle symbol of $\mu$ has a part equal to 2 . Assume that $\delta_{s^{\prime}}=2>\delta_{s^{\prime}+1}$. Then we may define

$$
\begin{align*}
\varphi(\mu) & =\binom{\alpha}{\beta}_{(m+j) \times j} \\
& =\left(\begin{array}{cccccc}
\gamma_{1}+1, & \gamma_{2}, & \ldots, & \gamma_{k^{\prime}}, & \delta_{k^{\prime}+1}-1, & \ldots, \\
\delta_{1}, & \delta_{2}, & \ldots, & \delta_{k^{\prime}}, & \gamma_{k^{\prime}+1}+1, & \ldots, \\
\gamma_{t^{\prime}-1}+1
\end{array}\right)_{\left(m+j^{\prime}\right) \times j^{\prime}} . \tag{4.6}
\end{align*}
$$

Evidently, $\beta_{1}=\delta_{1}=j, \alpha_{1}=\gamma_{1}+1=m+j>\alpha_{2}, \beta_{t^{\prime}}=\gamma_{t^{\prime}}+1 \geq 2$ and $t^{\prime}>s^{\prime}-1$. Moreover, it is easy to check that $|\varphi(\mu)|=|\mu|$. So we deduce that $\varphi(\mu) \in Q_{4}(m, n)$.

It remains to verify that $\varphi\left(\phi_{4}(\lambda)\right)=\lambda$. By the constructions (4.3) and (4.6) of $\phi_{4}(\lambda)$ and $\varphi(\mu)$, it suffices to show that the integer $k$ appearing in the representation of $\phi_{4}(\lambda)$ coincides with the integer $k^{\prime}$ appearing in the representation of $\varphi\left(\phi_{4}(\lambda)\right)$.

Recall that $k$ is the minimum integer determined by $\lambda$ subject to the conditions

$$
\begin{equation*}
1 \leq k \leq s, \quad \alpha_{k} \geq \beta_{k+1}-1, \quad \text { and } \quad \alpha_{k+1} \leq \beta_{k}-1 . \tag{4.7}
\end{equation*}
$$

On the other hand, it can be shown that $k$ is also the minimum integer $k^{\prime}$ depending on $\phi_{4}(\lambda)$ such that

$$
\begin{equation*}
1 \leq k^{\prime} \leq \ell(\gamma)-1, \quad \delta_{k^{\prime}}-1 \geq \gamma_{k^{\prime}+1} \quad \text { and } \quad \gamma_{k^{\prime}} \geq \delta_{k^{\prime}+1}-1 \geq 1 \tag{4.8}
\end{equation*}
$$

From the definitions of $k$ and $s$, we find that $s \leq t-1=\ell(\gamma)-1$, which implies $k \leq \ell(\gamma)-1$. By the construction (4.3) in $\phi_{4}(\lambda)$, we have $\gamma_{k+1}=\beta_{k+1}-1$ and $\delta_{k}=\beta_{k}$. Furthermore, we have $\gamma_{1}=\alpha_{1}-1$, and $\gamma_{k}=\alpha_{k}$ for $k \geq 2$. It can also be seen that $\delta_{s+1}=2$ and $\delta_{k+1}=\alpha_{k+1}+1$ for $1 \leq k \leq s-1$. Hence we deduce that $\delta_{k}-1 \geq \gamma_{k+1}$ and $\gamma_{k} \geq \delta_{k+1}-1 \geq 1$ for $1 \leq k \leq s$, that is, $k$ satisfies the conditions in (4.8).

Finally, we need to show that $k$ is the minimum integer satisfying conditions in (4.8). Assume to the contrary that there is an integer $1 \leq p \leq k-1$ for which the conditions in (4.8) are satisfied, that is,

$$
\delta_{p}-1 \geq \gamma_{p+1} \quad \text { and } \quad \gamma_{p} \geq \delta_{p+1}-1 \geq 1
$$

From the construction (4.3) of $\phi_{4}(\lambda)$ and the assumption $1 \leq p \leq k-1$, we find that

$$
\alpha_{p+1}=\gamma_{p+1}, \quad \beta_{p}=\delta_{p}, \quad \beta_{p+1}=\delta_{p+1} .
$$

Moreover, by (4.3) we see that $\alpha_{p}=\gamma_{p}+1$ if $p=1$ and $\alpha_{p}=\gamma_{p}$ if $p \geq 2$. In either case, we have

$$
\alpha_{p} \geq \beta_{p+1}-1 \quad \text { and } \quad \alpha_{p+1} \leq \beta_{p}-1
$$

This means that $p$ also satisfies the conditions in (4.7), contradicting the choice of $k$. So we conclude that $k$ is the minimum integer satisfying conditions in (4.8), which implies that $\varphi\left(\phi_{4}(\lambda)\right)=\lambda$. This completes the proof.

For example, for $m=2$ and $n=41$, consider the following 2-Durfee rectangle symbol in $Q_{4}(2,41)$ :

$$
\lambda=\left(\begin{array}{llllll}
5, & 4, & 2, & 1 \\
3, & 3, & 2, & 2, & 2, & 2
\end{array}\right)_{5 \times 3}
$$

It can be checked that $k=2$. Applying the injection $\phi_{4}$ to $\lambda$, we get

$$
\mu=\phi_{4}(\lambda)=\left(\begin{array}{llllll}
4, & 4, & 1, & 1, & 1, & 1 \\
3, & 3, & 3, & 2, & 2, & 1
\end{array}\right)_{5 \times 3}
$$

which is in $P_{4}(-2,41)$. Applying $\varphi$ to $\mu$, we obtain that $k^{\prime}=2$ and $\varphi(\mu)=\lambda$.
We next describe the injection $\phi_{5}$ from $Q_{5}(m, n)$ to $P_{5}(-m, n)$.
Lemma 4.6. For $m \geq 1$, there is an injection $\phi_{5}$ from $Q_{5}(m, n)$ to $P_{5}(-m, n)$.
Proof. Let

$$
\lambda=\binom{\alpha}{\beta}_{(m+j) \times j}=\left(\begin{array}{cccc}
\alpha_{1}, & \alpha_{2}, & \ldots, & \alpha_{s} \\
\beta_{1}, & \beta_{2}, & \ldots, & \beta_{t}
\end{array}\right)_{(m+j) \times j}
$$

be an $m$-Durfee rectangle symbol in $Q_{5}(m, n)$. By definition, we have $j=\beta_{1} \geq \beta_{t} \geq 2$, $\alpha_{1}=\alpha_{2}=m+j>\alpha_{3}$ and $t-s \geq 1$.

Since $\alpha_{2}-m+2=j+2>\beta_{3}-1$, we may choose the maximum number $k$ such that $1 \leq k \leq t-1$ and $\alpha_{k}-m+2 \geq \beta_{k+1}-1$. To define $\phi_{5}(\lambda)$, we construct two partitions $\gamma$ and $\delta$. It is clear that $k \geq 2$. So we may define

$$
\begin{equation*}
\gamma=\left(\beta_{2}+m-2, \ldots, \beta_{k}+m-2, \alpha_{k+1}+1, \ldots, \alpha_{t}+1\right) \tag{4.9}
\end{equation*}
$$

and

$$
\begin{equation*}
\delta=\left(\alpha_{2}+1-m, \alpha_{3}+2-m, \ldots, \alpha_{k}+2-m, \beta_{k+1}-1, \ldots, \beta_{t}-1\right) . \tag{4.10}
\end{equation*}
$$

Notice that when $k=2$ the above definition (4.10) may be ambiguous. In this case, (4.10) is interpreted as

$$
\delta=\left(\alpha_{2}+1-m, \beta_{3}-1, \ldots, \beta_{t}-1\right)
$$

We now define

$$
\begin{equation*}
\phi_{5}(\lambda)=\binom{\gamma}{\delta}_{(m+j+1) \times(j+1)} \tag{4.11}
\end{equation*}
$$

We first prove that $(\gamma, \delta)_{(m+j+1) \times(j+1)}$ is an $m$-Durfee rectangle symbol. To this end, we need to show that $\gamma$ and $\delta$ are partitions with $\gamma_{1} \leq m+j+1$ and $\delta_{1} \leq j+1$. We then verify that $(\gamma, \delta)_{(m+j+1) \times(j+1)}$ satisfies the conditions for $P_{5}(-m, n)$.

To prove that $\delta$ is a partition, it suffices to show that when $k=2$, we have

$$
\begin{equation*}
\alpha_{2}+1-m \geq \beta_{3}-1, \tag{4.12}
\end{equation*}
$$

and when $k \geq 3$, we have

$$
\begin{equation*}
\alpha_{2}+1-m \geq \alpha_{3}+2-m \tag{4.13}
\end{equation*}
$$

and

$$
\begin{equation*}
\alpha_{k}+2-m \geq \beta_{k+1}-1 \tag{4.14}
\end{equation*}
$$

When $k=2$, since $\alpha_{2}-m+1=j+1$ and $\beta_{3} \leq \beta_{1}=j$, we see that (4.12) holds, and so $\delta$ is a partition. When $k \geq 3$, since $\alpha_{2}>\alpha_{3}$, we get (4.13). On the other hand, (4.14) follows from the choice of $k$. Hence $\delta$ forms a partition when $k \geq 3$. Furthermore, it is clear from (4.10) that $\delta_{1}=\alpha_{2}+1-m=j+1$.

We now verify that $\gamma$ is a partition. From the definition (4.9) of $\gamma$, it suffices to show that

$$
\begin{equation*}
\beta_{k}+m-2 \geq \alpha_{k+1}+1 \tag{4.15}
\end{equation*}
$$

Keep in mind that $k$ is in the range from 2 to $t-1$. When $k=t-1$, (4.15) becomes $\beta_{t-1}+m-2 \geq \alpha_{t}+1$, which is valid since $\beta_{t-1} \geq 2$ and $\alpha_{t}=0$. When $2 \leq k \leq t-2$, since $k$ is the maximum integer such that $\alpha_{k}-m+2 \geq \beta_{k+1}-1$, we have $\alpha_{k+1}-m+2<$ $\beta_{k+2}-1$, which implies (4.15). This proves that $\gamma$ is a partition. It is clear from (4.9) that $\gamma_{1}=\beta_{2}+m-2 \leq j+m-2$.

Next we demonstrate that $(\gamma, \delta)_{(m+j+1) \times(j+1)}$ is an $m$-Durfee rectangle symbol in $P_{5}(-m, n)$. It is clear from (4.9) and (4.10) that $\delta_{1}=\alpha_{2}+1-m=j+1, \gamma_{1}=\beta_{2}+m-2 \leq$ $j+m-2$, and $\ell(\gamma)=\ell(\delta)=t-1$. It remains to check that $\left|(\gamma, \delta)_{(m+j+1) \times(j+1)}\right|=|\lambda|$. Note that

$$
\begin{aligned}
|\gamma|+|\delta|= & |\alpha|-\alpha_{1}+(2-m)(k-2)+1-m+(t-k) \\
& \quad+|\beta|-\beta_{1}+(m-2)(k-1)-(t-k) \\
= & |\alpha|-\alpha_{1}+|\beta|-\beta_{1}-1 .
\end{aligned}
$$

Since $\beta_{1}=j$ and $\alpha_{1}=m+j$, we get

$$
|\gamma|+|\delta|=|\alpha|+|\beta|-(2 j+m+1)
$$

Hence

$$
\begin{aligned}
\left|(\gamma, \delta)_{(m+j+1) \times(j+1)}\right| & =|\gamma|+|\delta|+(m+j+1)(j+1) \\
& =|\alpha|+|\beta|+j(j+m),
\end{aligned}
$$

which equals $|\lambda|$. So we arrive at the conclusion $(\gamma, \delta)_{(m+j+1) \times(j+1)} \in P_{5}(-m, n)$.
We are now in a position to prove that $\phi_{5}$ is an injection. Let

$$
J(m, n)=\left\{\phi_{5}(\lambda): \lambda \in Q_{5}(m, n)\right\}
$$

be the set of images of $\phi_{5}$. It has been shown that $J(m, n)$ is a subset of $P_{5}(-m, n)$. We wish to construct a map $\tau$ from $J(m, n)$ to $Q_{5}(m, n)$ such that for any $\lambda$ in $Q_{5}(m, n)$, we have

$$
\tau\left(\phi_{5}(\lambda)\right)=\lambda
$$

To describe the map $\tau$, let

$$
\mu=\binom{\gamma}{\delta}_{\left(m+j^{\prime}\right) \times j^{\prime}}=\left(\begin{array}{llll}
\gamma_{1}, & \gamma_{2}, & \ldots, & \gamma_{t^{\prime}} \\
\delta_{1}, & \delta_{2}, & \ldots, & \delta_{t^{\prime}}
\end{array}\right)_{\left(m+j^{\prime}\right) \times j^{\prime}}
$$

be an $m$-Durfee rectangle symbol in $J(m, n)$, that is, there is an $m$-Durfee rectangle symbol $\lambda=(\alpha, \beta)_{(m+j) \times j}$ in $Q_{5}(m, n)$ such that $\phi_{5}(\lambda)=\mu$. We claim that $\gamma_{t^{\prime}}=1$ and there exists an integer $k^{\prime}$ such that

$$
\begin{equation*}
1 \leq k^{\prime} \leq t^{\prime}-1 \quad \text { and } \quad \gamma_{k^{\prime}}-m+1 \geq \delta_{k^{\prime}+1} \tag{4.16}
\end{equation*}
$$

From the constructions (4.9) and (4.10) of $\phi_{5}$, we see that $\gamma_{t^{\prime}}=\alpha_{t}+1=1, \gamma_{k-1}=\beta_{k}+m-2$ and $\delta_{k}=\beta_{k+1}-1$. It follows that $\gamma_{k-1}-m+1 \geq \delta_{k}$. Since $1 \leq k-1 \leq t-2=t^{\prime}-1$, we reach the conclusion that $k-1$ satisfies the conditions in (4.16). This proves the claim.

By the above claim, we may choose $k^{\prime}$ to be the maximum integer such that $1 \leq k^{\prime} \leq$ $t^{\prime}-1$ and

$$
\begin{equation*}
\gamma_{k^{\prime}}-m+1 \geq \delta_{k^{\prime}+1} . \tag{4.17}
\end{equation*}
$$

The choice of $k^{\prime}$ yields that $\gamma_{k^{\prime}+1}-m+1<\delta_{k^{\prime}+2}$ when $1 \leq k^{\prime} \leq t^{\prime}-2$, which implies $\gamma_{k^{\prime}+1}-1<\delta_{k^{\prime}}-2+m$. When $k^{\prime}=t^{\prime}-1$, we also have $\gamma_{k^{\prime}+1}-1 \leq \delta_{k^{\prime}}-2+m$ since $\gamma_{t^{\prime}}=1$. Combining the above two cases for $k^{\prime}$, we obtain that

$$
\begin{equation*}
\gamma_{k^{\prime}+1}-1 \leq \delta_{k^{\prime}}-2+m . \tag{4.18}
\end{equation*}
$$

In view of (4.17) and (4.18), we may define

$$
\tau(\mu)=\binom{\alpha}{\beta}_{\left(m+j^{\prime}-1\right) \times\left(j^{\prime}-1\right)}
$$

where

$$
\begin{equation*}
\alpha=\left(j^{\prime}+m-1, \delta_{1}-1+m, \delta_{2}-2+m, \ldots, \delta_{k^{\prime}}-2+m, \gamma_{k^{\prime}+1}-1, \ldots, \gamma_{t^{\prime}}-1\right) \tag{4.19}
\end{equation*}
$$

and

$$
\begin{equation*}
\beta=\left(j^{\prime}-1, \gamma_{1}+2-m, \ldots, \gamma_{k^{\prime}}+2-m, \delta_{k^{\prime}+1}+1, \ldots, \delta_{t^{\prime}}+1\right) . \tag{4.20}
\end{equation*}
$$

It is easily checked that $\tau(\mu) \in Q_{5}(m, n)$.
Finally, we verify that $\tau\left(\phi_{5}(\lambda)\right)=\lambda$. By the constructions of $\phi_{5}(\lambda)$ and $\tau(\mu)$, it suffices to show that the integer $k$ appearing in the representation of $\phi_{5}(\lambda)$ is equal to the integer $k^{\prime}$ appearing in the representation of $\tau\left(\phi_{5}(\lambda)\right)$ plus 1 , namely, $k^{\prime}=k-1$.

Recall that $k$ is the maximum integer determined by $\lambda$ subject to the conditions

$$
\begin{equation*}
1 \leq k \leq t-1 \quad \text { and } \quad \alpha_{k}-m+2 \geq \beta_{k+1}-1 \tag{4.21}
\end{equation*}
$$

On the other hand, it can be shown that $k-1$ is the maximum integer $k^{\prime}$ determined by $\phi_{5}(\lambda)$ subject to the conditions

$$
\begin{equation*}
1 \leq k^{\prime} \leq t^{\prime}-1 \quad \text { and } \quad \gamma_{k^{\prime}}-m+1 \geq \delta_{k^{\prime}+1} \tag{4.22}
\end{equation*}
$$

Using (4.9) and (4.10), we find that $1 \leq k-1 \leq t-2=t^{\prime}-1$ and $\gamma_{k-1}-m+1=\beta_{k}-1 \geq$ $\beta_{k+1}-1=\delta_{k}$, that is, the conditions in (4.22) hold with $k^{\prime}$ replaced by $k-1$. It remains to show that $k-1$ is the maximum integer satisfying the conditions in (4.22). Assume to the contrary that there is an integer $p \geq k$ for which the conditions in (4.22) are satisfied, that is, $k \leq p \leq t^{\prime}-1$ and

$$
\begin{equation*}
\gamma_{p}-m+1 \geq \delta_{p+1} \tag{4.23}
\end{equation*}
$$

Since $t^{\prime}=t-1$, we have

$$
\begin{equation*}
k \leq p \leq t-2 \tag{4.24}
\end{equation*}
$$

From the constructions (4.9) and (4.10) of $\phi_{5}(\lambda)$, we find that $\gamma_{p}=\alpha_{p+1}+1$ and $\delta_{p+1}=$ $\beta_{p+2}-1$. By (4.23), we deduce that $\alpha_{p+1}-m+2 \geq \beta_{p+2}-1$. Moreover, it follows from (4.24) that $k+1 \leq p+1 \leq t-1$. Thus, (4.21) is valid with $k$ replaced by $p+1$, which contradicts the choice of $k$. So we conclude that $k-1$ is the maximum integer satisfying conditions in (4.22). This implies that $\tau\left(\phi_{5}(\lambda)\right)=\lambda$, and hence the proof is complete.

For example, for $m=1$ and $n=34$, consider the following 1-Durfee rectangle symbol in $Q_{5}(1,34)$ :

$$
\lambda=\left(\begin{array}{ccccc}
4, & 4, & 2 & & \\
3, & 3, & 2, & 2, & 2
\end{array}\right)_{4 \times 3}
$$

It can be checked that $k=4$. Applying the injection $\phi_{5}$ to $\lambda$, we get

$$
\mu=\phi_{5}(\lambda)=\left(\begin{array}{llll}
2, & 1, & 1, & 1 \\
4, & 3, & 1, & 1
\end{array}\right)_{5 \times 4}
$$

which is in $P_{5}(-1,34)$. Applying $\tau$ to $\mu$, we obtain that $k^{\prime}=3$ and $\tau(\mu)=\lambda$.
It should be remarked that the injection $\phi_{5}$ is not valid for $m=0$. More precisely, $\phi_{5}$ does not apply to Durfee symbols $\lambda=(\alpha, \beta)_{j}$ in $Q_{5}(0, n)$ with $\beta_{t-1}=2$, where $\ell(\beta)=t$ and $\ell(\alpha)=s<t$. Assume that $\beta_{t-1}=2$. Then we have $\alpha_{t-1}+2 \geq 2>\beta_{t}-1$, so that $k=t-1$. Applying $\phi_{5}$ to $(\alpha, \beta)_{j}$, we get

$$
\gamma=\left(\beta_{2}-2, \ldots, \beta_{t-1}-2, \alpha_{t}+1\right)
$$

which is not a partition, since $\gamma_{t-2}=\beta_{t-1}-2=0$ and $\gamma_{t-1}=\alpha_{t}+1=1$.
In the following lemma, we give an injection $\phi_{6}$ from $Q_{6}(m, n)$ to $P_{6}(-m, n)$.
Lemma 4.7. For $m \geq 1$, there is an injection $\phi_{6}$ from $Q_{6}(m, n)$ to $P_{6}(-m, n)$.
Proof. To define the map $\phi_{6}$, let

$$
\lambda=\binom{\alpha}{\beta}_{(m+j) \times j}=\left(\begin{array}{cccc}
\alpha_{1}, & \alpha_{2}, & \ldots, & \alpha_{s} \\
\beta_{1}, & \beta_{2}, & \ldots, & \beta_{t}
\end{array}\right)_{(m+j) \times j}
$$

be an $m$-Durfee rectangle symbol in $Q_{6}(m, n)$. By definition, we have $j=\beta_{1} \geq \beta_{t} \geq 2$, $\alpha_{1}=\alpha_{2}=\alpha_{3}=m+j$ and $t-s \geq 1$.

Since $\alpha_{3}-m+1=j+1>\beta_{3}-1$, there exists a maximum integer $k$ such that $k \leq s$ and $\alpha_{k}-m+1 \geq \beta_{k}-1$. We aim to construct two partitions $\gamma$ and $\delta$ from $\lambda$. It is clear that $k \geq 3$. So we may define

$$
\begin{equation*}
\gamma=\left(\beta_{1}+m-1, \ldots, \beta_{k-1}+m-1, \alpha_{k+1}+1, \ldots, \alpha_{s}+1,2,1^{t-s-1}\right) \tag{4.25}
\end{equation*}
$$

and

$$
\begin{equation*}
\delta=\left(\alpha_{3}+1-m, \ldots, \alpha_{k}+1-m, \beta_{k}-1, \ldots, \beta_{t}-1\right) . \tag{4.26}
\end{equation*}
$$

To avoid ambiguity, when $k=s$, we set

$$
\gamma=\left(\beta_{1}+m-1, \ldots, \beta_{s-1}+m-1,2,1^{t-s-1}\right)
$$

Using the argument in the proof of Lemma 4.6, it can be shown that $(\gamma, \delta)_{(m+j+1) \times(j+1)}$ is an $m$-Durfee rectangle symbol. Define

$$
\phi_{6}(\lambda)=\binom{\gamma}{\delta}_{(m+j+1) \times(j+1)}
$$

We claim that $\phi_{6}(\lambda)$ is an $m$-Durfee rectangle symbol in $P_{6}(-m, n)$. It is clear from (4.25) and (4.26) that $\gamma_{1}=j+m-1, \delta_{1}=j+1$ and $\ell(\gamma)=\ell(\delta)=t-1$. It remains to check that $\left|\phi_{6}(\lambda)\right|=|\lambda|$. Observe that

$$
\begin{align*}
|\gamma|+|\delta|= & |\alpha|-\alpha_{1}-\alpha_{2}+(1-m)(k-2)+(s-k)+2+(t-s-1) \\
& \quad+|\beta|+(m-1)(k-1)-(t-k+1) \\
= & |\alpha|+|\beta|-\alpha_{1}-\alpha_{2}+m-1 . \tag{4.27}
\end{align*}
$$

By the definition of $Q_{6}(m, n)$, we have $\alpha_{1}=\alpha_{2}=j+m$. Thus, it follows from (4.27) that

$$
|\gamma|+|\delta|=|\alpha|+|\beta|-(2 j+m+1) .
$$

Hence,

$$
\begin{aligned}
\left|\phi_{6}(\lambda)\right| & =|\gamma|+|\delta|+(j+1)(j+m+1) \\
& =|\alpha|+|\beta|+j(j+m),
\end{aligned}
$$

which equals to $|\lambda|$. This proves that $\phi_{6}(\lambda) \in P_{6}(-m, n)$.
Next we show that $\phi_{6}$ is an injection. Let

$$
K(m, n)=\left\{\phi_{6}(\lambda): \lambda \in Q_{6}(m, n)\right\}
$$

be the set of images of $\phi_{6}$, which has been shown to be a subset of $P_{6}(-m, n)$. It suffices to construct a map $\chi$ from $K(m, n)$ to $Q_{6}(m, n)$ such that for any $\lambda$ in $Q_{6}(m, n)$,

$$
\chi\left(\phi_{6}(\lambda)\right)=\lambda
$$

To describe the map $\chi$, let

$$
\mu=\binom{\gamma}{\delta}_{\left(m+j^{\prime}\right) \times j^{\prime}}=\left(\begin{array}{llll}
\gamma_{1}, & \gamma_{2}, & \ldots, & \gamma_{t^{\prime}}  \tag{4.28}\\
\delta_{1}, & \delta_{2}, & \ldots, & \delta_{t^{\prime}}
\end{array}\right)_{\left(m+j^{\prime}\right) \times j^{\prime}}
$$

be an $m$-Durfee rectangle symbol in $K(m, n)$, that is, there is an $m$-Durfee rectangle symbol $\lambda=(\alpha, \beta)_{(m+j) \times j}$ in $Q_{6}(m, n)$ such that $\phi_{6}(\lambda)=\mu$. From the defining relation (4.25) of $\phi_{6}$, we see that $\gamma$ has a part equal to 2 . Moreover, $s$ is the maximum number such that $\gamma_{s}=2$. This property enables us to determine $s$ from $\gamma$. We claim that there exists an integer $k^{\prime}$ such that

$$
\begin{equation*}
1 \leq k^{\prime} \leq s-1 \quad \text { and } \quad \gamma_{k^{\prime}}-m \geq \delta_{k^{\prime}} . \tag{4.29}
\end{equation*}
$$

By (4.25) and (4.26), we have

$$
2 \leq k-1 \leq s-1, \quad \gamma_{k-1}=\beta_{k-1}+m-1, \quad \delta_{k-1}=\beta_{k}-1
$$

which implies that

$$
1 \leq k-1 \leq s-1 \quad \text { and } \quad \gamma_{k-1}-m \geq \delta_{k-1}
$$

Hence the conditions in (4.29) are satisfied with $k^{\prime}$ replaced by $k-1$. So the claim is proved.

Now we may choose $k^{\prime}$ to be the maximum integer for which (4.29) holds. This choice of $k^{\prime}$ implies that $\gamma_{k^{\prime}+1}-m<\delta_{k^{\prime}+1}$ when $1 \leq k^{\prime} \leq s-2$. It follows that $\delta_{k^{\prime}-1}+m>\gamma_{k^{\prime}+1}$ when $1 \leq k^{\prime} \leq s-2$. When $k^{\prime}=s-1$, since $\gamma_{s}=2$, we have $\delta_{s-2}+m \geq \gamma_{s}$. Combining the above two cases for $k^{\prime}$, we deduce that

$$
\begin{equation*}
\delta_{k^{\prime}-1}+m \geq \gamma_{k^{\prime}+1} . \tag{4.30}
\end{equation*}
$$

By (4.29) and (4.30), we may define

$$
\chi(\mu)=\binom{\alpha}{\beta}_{\left(m+j^{\prime}-1\right) \times\left(j^{\prime}-1\right)}
$$

where

$$
\begin{equation*}
\alpha=\left(j^{\prime}+m-1, j^{\prime}+m-1, \delta_{1}-1+m, \ldots, \delta_{k^{\prime}-1}-1+m, \gamma_{k^{\prime}+1}-1, \ldots, \gamma_{s-1}-1\right) \tag{4.31}
\end{equation*}
$$

and

$$
\begin{equation*}
\beta=\left(\gamma_{1}+1-m, \ldots, \gamma_{k^{\prime}}+1-m, \delta_{k^{\prime}}+1, \ldots, \delta_{t^{\prime}}+1\right) \tag{4.32}
\end{equation*}
$$

It can be easily checked that $\chi(\mu) \in Q_{6}(m, n)$.
Finally, we verify that $\chi\left(\phi_{6}(\lambda)\right)=\lambda$. By the constructions of $\phi_{6}(\lambda)$ and $\chi(\mu)$, it suffices to show that the integer $k$ appearing in the representation of $\phi_{6}(\lambda)$ is equal to the integer $k^{\prime}$ appearing in the representation of $\chi\left(\phi_{6}(\lambda)\right)$ plus 1 , that is, $k^{\prime}=k-1$. This assertion can be justified by using the same argument as in the proof of Lemma 4.6. For completeness, we include a proof.

Recall that $k$ is the maximum integer determined by $\lambda$ subject to the conditions

$$
\begin{equation*}
3 \leq k \leq s, \quad \alpha_{k}-m+1 \geq \beta_{k}-1 . \tag{4.33}
\end{equation*}
$$

We proceed to show that $k-1$ is the maximum integer $k^{\prime}$ determined by $\phi_{6}(\lambda)$ such that

$$
\begin{equation*}
1 \leq k^{\prime} \leq s-1, \quad \gamma_{k^{\prime}}-m \geq \delta_{k^{\prime}} \tag{4.34}
\end{equation*}
$$

From the constructions (4.25) and (4.26) of $\phi_{6}$, it can be checked that (4.34) is valid with $k^{\prime}$ replaced by $k-1$. So it suffices to show that $k-1$ is the maximum integer satisfying conditions in (4.34). Assume to the contrary that there is an integer $k \leq p \leq s-1$ for which the conditions in (4.34) are satisfied, that is,

$$
\begin{equation*}
\gamma_{p}-m \geq \delta_{p} \tag{4.35}
\end{equation*}
$$

In view of the constructions (4.25) and (4.26) of $\phi_{6}$, and noting that $k \leq p \leq s-1$, we find that

$$
\begin{equation*}
\gamma_{p}=\alpha_{p+1}+1 \quad \text { and } \quad \delta_{p}=\beta_{p+1}-1 \tag{4.36}
\end{equation*}
$$

Substituting (4.36) into (4.35), we arrive at

$$
\alpha_{p+1}-m+1 \geq \beta_{p+1}-1
$$

This means that (4.33) holds with $k$ being replaced by $p+1$. But this contradicts the maximality of $k$. So we conclude that $k-1$ is the maximum integer satisfying conditions in (4.34), which implies that $\chi\left(\phi_{6}(\lambda)\right)=\lambda$. This completes the proof.

For example, for $m=2$ and $n=60$, let

$$
\lambda=\left(\begin{array}{llllllll}
5, & 5, & 5, & 5, & 3, & 2 & & \\
3, & 3, & 3, & 3, & 2, & 2, & 2, & 2
\end{array}\right)_{5 \times 3}
$$

be a 2-Durfee rectangle symbol in $Q_{6}(2,60)$. It can be checked that $k=6$. Applying $\phi_{6}$ to $\lambda$, we get

$$
\mu=\phi_{6}(\lambda)=\left(\begin{array}{lllllll}
4, & 4, & 4, & 4, & 3, & 2, & 1 \\
4, & 4, & 2, & 1, & 1, & 1, & 1
\end{array}\right)_{6 \times 4}
$$

which in $P_{6}(-2,60)$. Applying $\chi$ to $\mu$, we obtain that $s=6, k^{\prime}=5$ and $\chi(\mu)=\lambda$.
It should be noted that the injection $\phi_{6}$ is not valid for $m=0$. To be more specific, $\phi_{6}$ does not apply to Durfee symbols $\lambda=(\alpha, \beta)_{j}$ in $Q_{6}(0, n)$ with $\beta_{s-1}=2$, where $\ell(\alpha)=s$ and $\ell(\beta)=t$. Assume that $(\gamma, \delta)_{j^{\prime}}=\phi_{6}(\lambda)$. Since $\beta_{s-1}=2$, we have $\alpha_{s}+1 \geq 2>\beta_{s}-1$, which implies that $k=s$. Thus

$$
\gamma=\left(\beta_{1}-1, \ldots, \beta_{s-1}-1,2,1^{t-s-1}\right)
$$

which is not a partition, since $\gamma_{s-1}=\beta_{s-1}-1=1$ and $\gamma_{s}=2$.
Combining the above injections $\phi_{i}(1 \leq i \leq 6)$, we are led to an injection from $Q(m, n)$ to $P(-m, n)$ for the case $m \geq 1$.

Proof of Theorem 4.1 for $m \geq 1$. Assume that $m \geq 1$. Let $\lambda$ be a partition in $Q(m, n)$, define

$$
\Phi(\lambda)= \begin{cases}\phi_{1}(\lambda), & \text { if } \lambda \in Q_{1}(m, n) \\ \phi_{2}(\lambda), & \text { if } \lambda \in Q_{2}(m, n) \\ \phi_{3}(\lambda), & \text { if } \lambda \in Q_{3}(m, n) \\ \phi_{4}(\lambda), & \text { if } \lambda \in Q_{4}(m, n) \\ \phi_{5}(\lambda), & \text { if } \lambda \in Q_{5}(m, n) ; \\ \phi_{6}(\lambda), & \text { if } \lambda \in Q_{6}(m, n)\end{cases}
$$

Using the divisions of $Q(m, n)$ and $P(-m, n)$ and combining Lemmas 4.2-4.7, we conclude that $\Phi$ is an injection from $Q(m, n)$ to $P(-m, n)$.

## 5 Proof of Theorem 1.6 for $m=0$

In this section, we give a proof of Theorem 4.1 for $m=0$, and so Theorem 1.6 holds for $m=0$. In addition to the injections $\phi_{1}, \phi_{2}, \phi_{3}$ and $\phi_{4}$ for $m \geq 0$ and restrictions of $\phi_{5}$ and $\phi_{6}$, this seemingly special case requires three more injections.

Recall that $Q(0, n)$ denotes the set of Durfee symbols $(\alpha, \beta)_{j}$ of $n$ such that $\beta_{1}=j$ and $P(0, n)$ denotes the set of Durfee symbols $(\gamma, \delta)_{j}$ of $n$ such that $\ell(\delta)-\ell(\gamma) \leq 0$. From the definitions of $Q_{i}(m, n)$ and $P_{i}(-m, n)$ given in Section 4, it can be seen that

$$
Q(0, n)=\bigcup_{i=1}^{6} Q_{i}(0, n)
$$

and

$$
P(0, n)=\bigcup_{i=1}^{8} P_{i}(0, n)
$$

It is known that $Q_{1}(0, n)=P_{1}(0, n)$. By Lemmas 4.2, 4.3 and 4.5, we see that the injections $\phi_{2}, \phi_{3}, \phi_{4}$ can be applied to $Q_{2}(0, n), Q_{3}(0, n)$ and $Q_{4}(0, n)$, so that we get three injections from $Q_{i}(0, n)$ to $P_{i}(0, n)$, where $2 \leq i \leq 4$.

As mentioned in the previous section, the injections $\phi_{5}$ and $\phi_{6}$ do not apply to $Q_{5}(0, n)$ and $Q_{6}(0, n)$. We need to construct an injection from $Q_{5}(0, n) \cup Q_{6}(0, n)$ to $P_{5}(0, n) \cup$ $P_{6}(0, n) \cup P_{7}(0, n) \cup P_{8}(0, n)$. To this end, we shall divide the set $Q_{5}(0, n) \cup Q_{6}(0, n)$ into five disjoint subsets $\bar{Q}_{1}(0, n), \bar{Q}_{2}(0, n), \bar{Q}_{3}(0, n), \bar{Q}_{4}(0, n)$ and $\bar{Q}_{5}(0, n)$ :
(1) $\bar{Q}_{1}(0, n)$ is the set of Durfee symbols $(\alpha, \beta)_{j} \in Q_{5}(0, n)$ with $s(\beta) \geq 3$;
(2) $\bar{Q}_{2}(0, n)$ is the set of Durfee symbols $(\alpha, \beta)_{j} \in Q_{6}(0, n)$ with $s(\beta) \geq 3$;
(3) $\bar{Q}_{3}(0, n)$ is the set of Durfee symbols $(\alpha, \beta)_{j} \in Q_{5}(0, n) \cup Q_{6}(0, n)$ with $s(\alpha)=1$ and $s(\beta)=2$;
(4) $\bar{Q}_{4}(0, n)$ is the set of Durfee symbols $(\alpha, \beta)_{j} \in Q_{5}(0, n) \cup Q_{6}(0, n)$ with $s(\alpha) \geq 2$, $\beta_{1}=\beta_{2}$ and $s(\beta)=2 ;$
(5) $\bar{Q}_{5}(0, n)$ is the set of Durfee symbols $(\alpha, \beta)_{j} \in Q_{5}(0, n) \cup Q_{6}(0, n)$ with $s(\alpha) \geq 2$, $\beta_{1}>\beta_{2}$ and $s(\beta)=2$.

On the other hand, we divide the set $P_{5}(0, n) \cup P_{6}(0, n)$ into three disjoint subsets $\bar{P}_{1}(0, n), \bar{P}_{2}(0, n)$ and $\bar{P}_{3}(0, n)$ :
(1) $\bar{P}_{1}(0, n)$ is the set of Durfee symbols $(\gamma, \delta)_{j^{\prime}} \in P_{5}(0, n)$ with $s(\delta) \geq 2$;
(2) $\bar{P}_{2}(0, n)$ is the set of Durfee symbols $(\gamma, \delta)_{j^{\prime}} \in P_{6}(0, n)$ with $s(\delta) \geq 2$;
(3) $\bar{P}_{3}(0, n)$ is the set of Durfee symbols $(\gamma, \delta)_{j^{\prime}} \in P_{5}(0, n) \cup P_{6}(0, n)$ with $s(\delta)=1$.

In the following lemmas, we shall show that there exist an injection $\psi_{1}$ from $\bar{Q}_{1}(0, n)$ to $\bar{P}_{1}(0, n)$, an injection $\psi_{2}$ from $\bar{Q}_{2}(0, n)$ to $\bar{P}_{2}(0, n)$, an injection $\psi_{3}$ from $\bar{Q}_{3}(0, n)$ to $\bar{P}_{3}(0, n)$, an injection $\psi_{4}$ from $\bar{Q}_{4}(0, n)$ to $P_{7}(0, n)$ and an injection $\psi_{5}$ from $\bar{Q}_{5}(0, n)$ to $P_{8}(0, n)$. It should be noted that $\psi_{1}$ is a restriction of $\phi_{5}$ to $\bar{Q}_{1}(0, n)$ and $\psi_{2}$ is a restriction of $\phi_{6}$ to $\bar{Q}_{2}(0, n)$. Then the injection $\Phi$ for $m=0$ consists of injections $\phi_{i}(1 \leq i \leq 4)$ and injections $\psi_{i}(1 \leq i \leq 5)$.

Lemma 5.1. There exists an injection $\psi_{1}$ from $\bar{Q}_{1}(0, n)$ to $\bar{P}_{1}(0, n)$.
Proof. Let

$$
\lambda=\binom{\alpha}{\beta}_{j}=\left(\begin{array}{cccc}
\alpha_{1}, & \alpha_{2}, & \ldots, & \alpha_{s} \\
\beta_{1}, & \beta_{2}, & \ldots, & \beta_{t}
\end{array}\right)_{j}
$$

be a Durfee symbol in $\bar{Q}_{1}(0, n)$. By definition, we have $j=\beta_{1} \geq \beta_{t} \geq 3, j=\alpha_{1}=\alpha_{2}>\alpha_{3}$ and $t-s \geq 1$. Consequently, we have $\alpha_{2}+2=j+2>\beta_{3}-1$. Hence there exists a maximum number $k$ such that $1 \leq k \leq t-1$ and $\alpha_{k}+2 \geq \beta_{k+1}-1$. So we may define

$$
\begin{equation*}
\psi_{1}(\lambda)=\binom{\gamma}{\delta}_{j+1} \tag{5.1}
\end{equation*}
$$

where

$$
\gamma=\left(\beta_{2}-2, \ldots, \beta_{k}-2, \alpha_{k+1}+1, \ldots, \alpha_{t}+1\right)
$$

and

$$
\delta=\left(\alpha_{2}+1, \alpha_{3}+2, \ldots, \alpha_{k}+2, \beta_{k+1}-1, \ldots, \beta_{t}-1\right)
$$

Using the same argument as in the proof of Lemma 4.6, we deduce that $\psi_{1}(\lambda)$ is a Durfee symbol in $\bar{P}_{1}(0, n)$ and the construction of $\psi_{1}$ is reversible. Thus $\psi_{1}$ is an injection from $\bar{Q}_{1}(0, n)$ to $\bar{P}_{1}(0, n)$. This completes the proof.

Lemma 5.2. There exists an injection $\psi_{2}$ from $\bar{Q}_{2}(0, n)$ to $\bar{P}_{2}(0, n)$.
Proof. Let

$$
\lambda=\binom{\alpha}{\beta}_{j}=\left(\begin{array}{cccc}
\alpha_{1}, & \alpha_{2}, & \ldots, & \alpha_{s} \\
\beta_{1}, & \beta_{2}, & \ldots, & \beta_{t}
\end{array}\right)_{j}
$$

be a Durfee symbol in $\bar{Q}_{2}(0, n)$. In this case, we have $j=\beta_{1} \geq \beta_{t} \geq 3, j=\alpha_{1}=\alpha_{2}=\alpha_{3}$ and $t-s \geq 1$. Thus, $\alpha_{3}+1=j+1>\beta_{3}-1$. So we may assume that $k$ is the maximum integer such that $k \leq s$ and $\alpha_{k}+1 \geq \beta_{k}-1$. Define

$$
\begin{equation*}
\psi_{2}(\lambda)=\binom{\gamma}{\delta}_{j+1} \tag{5.2}
\end{equation*}
$$

where

$$
\gamma=\left(\beta_{1}-1, \ldots, \beta_{k-1}-1, \alpha_{k+1}+1, \ldots, \alpha_{s}+1,2,1^{t-s-1}\right)
$$

and

$$
\delta=\left(\alpha_{3}+1, \ldots, \alpha_{k}+1, \beta_{k}-1, \ldots, \beta_{t}-1\right) .
$$

It can be checked that $\psi_{2}(\lambda)$ is a Durfee symbol in $\bar{P}_{2}(0, n)$. Moreover, it can be shown that $\psi_{2}$ is reversible by using the same reasoning as in the proof of Lemma 4.7. Hence $\psi_{2}$ is an injection, and the proof is complete.

Lemma 5.3. There is an injection $\psi_{3}$ from $\bar{Q}_{3}(0, n)$ to $\bar{P}_{3}(0, n)$.
Proof. Let

$$
\lambda=\binom{\alpha}{\beta}_{j}=\left(\begin{array}{cccc}
\alpha_{1}, & \alpha_{2}, & \ldots, & \alpha_{s} \\
\beta_{1}, & \beta_{2}, & \ldots, & \beta_{t}
\end{array}\right)_{j}
$$

be a Durfee symbol in $\bar{Q}_{3}(0, n)$. So we have $\alpha_{1}=\alpha_{2}=j, \alpha_{s}=1, \beta_{1}=j, \beta_{t}=2$ and $t-s \geq 1$. It follows that $\beta_{2} \leq j$ and $\alpha_{2}=j$. This enables us to define

$$
\psi_{3}(\lambda)=\binom{\gamma}{\delta}_{j^{\prime}}=\left(\begin{array}{ccc}
\beta_{2}-1, & \ldots, & \beta_{t}-1  \tag{5.3}\\
\alpha_{2}+1, & \ldots, & \alpha_{s-1}+1, \\
1^{t-s+1}
\end{array}\right)_{j+1}
$$

Note that $\gamma_{1}=\beta_{2}-1 \leq j-1=j^{\prime}-2, \delta_{1}=\alpha_{2}+1=j+1=j^{\prime}$ and $\ell(\gamma)=\ell(\delta)$. Since $t-s \geq 1$, we see that $s(\delta)=1$. Since $\alpha_{s}=1$, it is easily checked that $\left|\psi_{3}(\lambda)\right|=|\lambda|$. This proves that $\psi_{3}(\lambda)$ is in $\bar{P}_{3}(0, n)$.

To show that $\psi_{3}$ is an injection, let

$$
L(m, n)=\left\{\psi_{3}(\lambda): \lambda \in \bar{Q}_{3}(0, n)\right\}
$$

be the set of images of $\psi_{3}$, which has been shown to be a subset of $\bar{P}_{3}(0, n)$. It suffices to construct a map $\vartheta$ from $L(m, n)$ to $\bar{Q}_{3}(0, n)$ such that for any $\lambda$ in $\bar{Q}_{3}(0, n)$,

$$
\begin{equation*}
\vartheta\left(\psi_{3}(\lambda)\right)=\lambda \tag{5.4}
\end{equation*}
$$

Let

$$
\mu=\binom{\gamma}{\delta}_{j^{\prime}}=\left(\begin{array}{llll}
\gamma_{1}, & \gamma_{2}, & \ldots, & \gamma_{t^{\prime}} \\
\delta_{1}, & \delta_{2}, & \ldots, & \delta_{t^{\prime}}
\end{array}\right)_{j^{\prime}}
$$

be a Durfee symbol in $L(m, n)$. We claim that $\gamma_{t^{\prime}}=1$ and $\delta_{t^{\prime}-1}=1$. By the definition of $L(m, n)$, there exists a Durfee symbol $\lambda=(\alpha, \beta)_{j}$ in $\bar{Q}_{3}(0, n)$ such that $\psi_{3}(\lambda)=\mu$. Since $t-s+1 \geq 2$ and $\beta_{t}=2$, from the definition (5.3) of $\psi_{3}(\lambda)$, we get

$$
\begin{equation*}
\gamma_{t^{\prime}}=\beta_{t}-1=1 \quad \text { and } \quad \delta_{t^{\prime}-1}=1 \tag{5.5}
\end{equation*}
$$

So the claim holds.
We next define the map $\vartheta$. Let $h^{\prime}$ be the largest index such that $\delta_{h^{\prime}}>1$. By the above claim, we have $\delta_{t^{\prime}-1}=1$, and so $h^{\prime} \leq t^{\prime}-2$. Define

$$
\vartheta(\mu)=\left(\begin{array}{cccc}
j^{\prime}-1, & \delta_{1}-1, & \ldots, & \delta_{h^{\prime}}-1, \\
j^{\prime}-1, & \gamma_{1}+1, & \ldots, & \gamma_{t^{\prime}}+1
\end{array}\right)_{j^{\prime}-1}
$$

It is not difficult to check that $\vartheta(\mu) \in \bar{Q}_{3}(0, n)$ and $\vartheta\left(\psi_{3}(\lambda)\right)=\lambda$ for $\lambda \in \bar{Q}_{3}(0, n)$. Therefore, $\psi_{3}$ is an injection from $\bar{Q}_{3}(0, n)$ to $\bar{P}_{3}(0, n)$. This completes the proof.

For example, for $n=35$, let

$$
\lambda=\left(\begin{array}{llllll}
3, & 3, & 2, & 2, & 1 \\
3, & 3, & 3, & 2, & 2, & 2
\end{array}\right)_{3}
$$

be a Durfee symbol in $\bar{Q}_{3}(0,35)$. Applying the injection $\psi_{3}$ to $\lambda$, we get

$$
\psi_{3}(\lambda)=\left(\begin{array}{lllll}
2, & 2, & 1, & 1, & 1 \\
4, & 3, & 3, & 1, & 1
\end{array}\right)_{4}
$$

which is in $\bar{P}_{3}(0,35)$. Applying $\vartheta$ to $\mu$, we find that $h^{\prime}=3$ and $\vartheta(\mu)=\lambda$.
Lemma 5.4. There is a bijection $\psi_{4}$ between $\bar{Q}_{4}(0, n)$ and $P_{7}(0, n)$.
Proof. Let

$$
\lambda=\binom{\alpha}{\beta}_{j}=\left(\begin{array}{cccc}
\alpha_{1}, & \alpha_{2}, & \ldots, & \alpha_{s} \\
\beta_{1}, & \beta_{2}, & \ldots, & \beta_{t}
\end{array}\right)_{j}
$$

be a Durfee symbol in $\bar{Q}_{4}(0, n)$. By definition, $\alpha_{1}=\alpha_{2}=j, \alpha_{s} \geq 2, \beta_{1}=\beta_{2}=j, \beta_{t}=2$ and $t-s \geq 1$. Thus, $\alpha_{2}=j>\beta_{3}-1$ and $\beta_{2}=j \geq \alpha_{3}$. So we may define

$$
\psi_{4}(\lambda)=\binom{\gamma}{\delta}_{j^{\prime}}=\left(\begin{array}{ccccc}
\alpha_{2}, & \beta_{3}-1, & \ldots, & \beta_{t-1}-1 \\
\beta_{2}+1, & \alpha_{3}+1, & \ldots, & \alpha_{s}+1, & 1^{t-s-1}
\end{array}\right)_{j+1}
$$

Note that $\delta_{s-1}=\alpha_{s}+1 \geq 3$ and $\delta_{i}=1$ for $s \leq i \leq t-2$. It is clear that $\delta$ has no parts equal to 2. Since $\beta_{t}=2$, we find that $\left|\psi_{4}(\lambda)\right|=|\lambda|$. Moreover, we have $\ell(\gamma)=\ell(\delta)=t-2$, $\delta_{1}=\beta_{2}+1=j+1=j^{\prime}$ and $\gamma_{1}=\alpha_{2}=j=j^{\prime}-1>\beta_{3}-1=\gamma_{2}$. So $\psi_{4}(\lambda)$ is in $P_{7}(0, n)$.

To show that $\psi_{4}$ is a bijection, we construct the inverse map $\xi$ of $\psi_{4}$. Let

$$
\mu=\binom{\gamma}{\delta}_{\left(m+j^{\prime}\right) \times j^{\prime}}=\left(\begin{array}{llll}
\gamma_{1}, & \gamma_{2}, & \ldots, & \gamma_{t^{\prime}} \\
\delta_{1}, & \delta_{2}, & \ldots, & \delta_{t^{\prime}}
\end{array}\right)_{j^{\prime}}
$$

be a Durfee symbol in $P_{7}(0, n)$. By the definition of $P_{7}(0, n)$, we have $\delta_{1}=j^{\prime}, \gamma_{1}=j^{\prime}-1>$ $\gamma_{2}$ and $\delta$ has no part equal to 2 . We define $\xi(\mu)$ as follows:

$$
\xi(\mu)=\left(\begin{array}{ccccc}
j^{\prime}-1, & \gamma_{1}, & \delta_{2}-1, & \ldots, & \delta_{t^{\prime}}-1 \\
j^{\prime}-1, & \delta_{1}-1, & \gamma_{2}+1, & \ldots, & \gamma_{t^{\prime}}+1,
\end{array}\right)_{j^{\prime}-1}
$$

It can be checked that $\xi(\mu) \in \bar{Q}_{4}(0, n)$ and $\xi$ is the inverse map of $\psi_{4}$. Thus $\psi_{4}$ is a bijection.

For example, for $n=40$, consider the following Durfee symbol in $\bar{Q}_{4}(0,40)$ :

$$
\lambda=\left(\begin{array}{llllll}
3, & 3, & 3, & 2, & 2 \\
3, & 3, & 3, & 3, & 2, & 2,
\end{array}\right)_{3}
$$

Applying the bijection $\psi_{4}$, we get

$$
\psi_{4}(\lambda)=\left(\begin{array}{lllll}
3, & 2, & 2, & 1, & 1 \\
4, & 4, & 3, & 3, & 1
\end{array}\right)_{4}
$$

which is in $P_{7}(0,40)$. Applying $\xi$ to $\psi_{4}(\lambda)$, we recover $\lambda$.
Lemma 5.5. There is an injection $\psi_{5}$ from $\bar{Q}_{5}(0, n)$ to $P_{8}(0, n)$.
Proof. Let

$$
\lambda=\binom{\alpha}{\beta}_{j}=\left(\begin{array}{cccc}
\alpha_{1}, & \alpha_{2}, & \ldots, & \alpha_{s} \\
\beta_{1}, & \beta_{2}, & \ldots, & \beta_{t}
\end{array}\right)_{j}
$$

be a Durfee symbol in $\bar{Q}_{5}(0, n)$. In this case, we have $\alpha_{1}=\alpha_{2}=j, \alpha_{s} \geq 2, j=\beta_{1}>\beta_{2}$, $\beta_{t}=2$ and $t-s \geq 1$. Observe that $j \geq 3$, since $j=\beta_{1}>\beta_{2} \geq \beta_{t}=2$.

We next define the map $\psi_{5}$. Given $\alpha_{1}=\alpha_{2}=j$, we may choose $k$ to be the maximum integer such that $\alpha_{k}=j$. Clearly, $k \geq 2$. Using $\beta_{t}=2$, we may choose $h$ to be the minimum integer such that $\beta_{h}=2$. Since $\beta_{1}=j>2$, we get $2 \leq h \leq t$.

By the choice of $k$, we see that $\alpha_{k}=j$ and $\alpha_{k+1}<j$. Combining $\beta_{1}=j$ and $\beta_{2}<j$, we see that $\alpha_{k}>\beta_{2}$ and $\beta_{1}>\alpha_{k+1}$. On the other hand, by the choice of $h$, we see that $\beta_{h-1}>\beta_{h}$. So we may define

$$
\begin{align*}
\psi_{5}(\lambda) & =\binom{\gamma}{\delta}_{j^{\prime}} \\
& =\left(\begin{array}{cccccc}
\alpha_{1}-1, & \ldots, & \alpha_{k}-1, & \beta_{2}-1, & \ldots, & \beta_{h-1}-1, \\
\beta_{1}, & \alpha_{k+1}+1, & \ldots, & \beta_{h}, & 1^{t-h} \\
\alpha_{s}+1, & 1^{2 k-2+t-s}
\end{array}\right. \tag{5.6}
\end{align*}
$$

Since $\delta_{s-k+1}=\alpha_{s}+1 \geq 3$ and $\delta_{i}=1$ for $s-k+2 \leq i \leq t-1+k$, we deduce that $\delta$ has no parts equal to 2 . Furthermore, it is easily checked that $\ell(\gamma)=\ell(\delta)=t+k-1$, $\delta_{1}=j^{\prime}, \gamma_{1}=\gamma_{2}=j^{\prime}-1$ and $\left|\psi_{5}(\lambda)\right|=|\lambda|$. So $\psi_{5}(\lambda)$ is in $P_{8}(0, n)$.

To prove that $\psi_{5}$ is an injection, let

$$
R(0, n)=\left\{\psi_{5}(\lambda): \lambda \in \bar{Q}_{5}(0, n)\right\}
$$

be the set of images of $\psi_{5}$, which has been shown to be a subset of $P_{8}(0, n)$. We shall construct a map $\theta$ from $R(0, n)$ to $\bar{Q}_{5}(0, n)$ such that for any $\lambda$ in $\bar{Q}_{5}(0, n)$,

$$
\theta\left(\psi_{5}(\lambda)\right)=\lambda
$$

Let

$$
\mu=\binom{\gamma}{\delta}_{j^{\prime}}=\left(\begin{array}{llll}
\gamma_{1}, & \gamma_{2}, & \ldots, & \gamma_{t^{\prime}} \\
\delta_{1}, & \delta_{2}, & \ldots, & \delta_{t^{\prime}}
\end{array}\right)_{j^{\prime}}
$$

be a Durfee symbol in $R(0, n)$. Let $k^{\prime}$ denote the number of occurrences of $j^{\prime}-1$ in $\gamma$ and let $n_{1}(\delta)$ denote the number of occurrences of 1 in $\delta$. We claim that for $j^{\prime} \geq 4$, we have $k^{\prime} \geq 2$ and $n_{1}(\delta) \geq 2 k^{\prime}-1$, and for $j^{\prime}=3$, we have $k^{\prime} \geq 3$ and $n_{1}(\delta) \geq 2 k^{\prime}-3$.

By the definition of $R(0, n)$, there exists a Durfee symbol $\lambda=(\alpha, \beta)_{j}$ in $\bar{Q}_{5}(0, n)$ such that $\psi_{5}(\lambda)=\mu$. From the construction (5.6) of $\psi_{5}$, we find that $j^{\prime}=j$ and $n_{1}(\delta)=$ $2 k-2+t-s$. Since $t-s \geq 1$, we get $n_{1}(\delta) \geq 2 k-1$. Moreover, since $k \geq 2$, it suffices to show that $k^{\prime}=k$ if $j \geq 4$ and $k^{\prime}=k+1$ if $j=3$. From the construction (5.6) of $\psi_{5}$, we get $\gamma_{i}=\alpha_{i}-1$ for $1 \leq i \leq k$. Since $\alpha_{i}=j$ for $1 \leq i \leq k$, we deduce that $\gamma_{i}=j-1$ for $1 \leq i \leq k$, which implies $k^{\prime} \geq k$.

It remains to show that $\gamma_{k+1}<j-1$ for $j \geq 4$ and $\gamma_{k+1}=j-1>\gamma_{k+2}$ for $j=3$. By (5.6), we have either $\gamma_{k+1}=\beta_{2}-1$ or $\gamma_{k+1}=\beta_{h}$. For $j \geq 4$, in either case, we have $\gamma_{k+1}<j-1$ since $\beta_{2}<j$ and $\beta_{h}=2$. For $j=3$, we have $\beta_{1}=3$ and $\beta_{2}=2$, so that $h=2$, where $h$ is the minimum integer such that $\beta_{h}=2$. This implies that $\gamma_{k+1}=\beta_{2}=2=j-1$. Since $\gamma_{k+2} \leq 1$, we find that $\gamma_{k+2}<j-1$. Thus, we arrive at the conclusion that $k^{\prime}=k+1$ for $j=3$. This proves the claim.

From the construction (5.6) of $\psi_{5}$, it can be seen that $\gamma_{k+h-1}=\beta_{h}=2$. So we may choose $h^{\prime}$ to be the maximum integer such that $\gamma_{h^{\prime}}=2$. Recall that $k^{\prime}$ denotes the number of occurrences of $j^{\prime}-1$ in $\gamma$. We consider the following two cases:

Case 1: $j^{\prime} \geq 4$. Define

$$
\theta(\mu)=\left(\begin{array}{cccccc}
\gamma_{1}+1, & \ldots, & \gamma_{k^{\prime}}+1, & \delta_{2}-1, & \ldots, & \delta_{t^{\prime}}-1 \\
\delta_{1}, & \gamma_{k^{\prime}+1}+1, & \ldots, & \gamma_{h^{\prime}-1}+1, & \gamma_{h^{\prime}}, & \gamma_{h^{\prime}+1}+1, \\
\ldots, & \gamma_{t^{\prime}}+1
\end{array}\right)_{j^{\prime}}
$$

By the above claim, we have $k^{\prime} \geq 2$ and $n_{1}(\delta) \geq 2 k^{\prime}-1$. Now it is easy to check that $\theta(\mu) \in \bar{Q}_{5}(0, n)$.
Case 2: $j^{\prime}=3$. By the definitions of $k^{\prime}$ and $h^{\prime}$, we have $k^{\prime}=h^{\prime}$. Let $r^{\prime}=n_{1}(\delta)$ and define

$$
\theta(\mu)=\left(\begin{array}{cc}
3^{k^{\prime}-1}, & 2^{t^{\prime}-r^{\prime}-1} \\
3, & 2^{t^{\prime}-k^{\prime}+1}
\end{array}\right)_{3}
$$

From the above claim, we deduce that $r^{\prime} \geq 2 k^{\prime}-3$ and $k^{\prime} \geq 3$. Then it is easily checked that $\theta(\mu) \in \bar{Q}_{5}(0, n)$.

Finally, from the constructions of $\psi_{5}$ and $\theta$ together with the above claim, it is straightforward to verify that $\theta\left(\psi_{5}(\lambda)\right)=\lambda$ for any $\lambda \in \bar{Q}_{5}(0, n)$. This completes the proof.

For example, for $n=51$, consider the following Durfee symbol in $\bar{Q}_{5}(0,51)$ :

$$
\lambda=\left(\begin{array}{lllllll}
4, & 4, & 4, & 2, & 2 & \\
4, & 3, & 3, & 3, & 2, & 2, & 2
\end{array}\right)_{4}
$$

Applying the injection $\psi_{5}$, we obtain that $k=3, h=5$, and

$$
\mu=\psi_{5}(\lambda)=\left(\begin{array}{lllllllll}
3, & 3, & 3, & 2, & 2, & 2, & 2, & 1, & 1 \\
4, & 3, & 3, & 1, & 1, & 1, & 1, & 1, & 1
\end{array}\right)_{4}
$$

which is in $P_{8}(0,51)$. Applying $\theta$ to $\mu$, we find that $k^{\prime}=3, h^{\prime}=7$ and $\theta(\mu)=\lambda$.
We are now ready to complete the proof of Theorem 4.1 for the case $m=0$.
Proof of Theorem 4.1 for $m=0$. From the definitions of $Q_{i}(0, n)(1 \leq i \leq 6)$ and $\bar{Q}_{i}(0, n)$ $(1 \leq i \leq 5)$, we have

$$
\begin{aligned}
Q(0, n)= & Q_{1}(0, n) \cup Q_{2}(0, n) \cup Q_{3}(0, n) \cup Q_{4}(0, n) \cup \bar{Q}_{1}(0, n) \cup \bar{Q}_{2}(0, n) \\
& \cup \bar{Q}_{3}(0, n) \cup \bar{Q}_{4}(0, n) \cup \bar{Q}_{5}(0, n)
\end{aligned}
$$

By the definitions of $P_{i}(0, n)(1 \leq i \leq 8)$ and $\bar{P}_{i}(0, n)(1 \leq i \leq 3)$, we have

$$
\begin{aligned}
P(0, n)= & P_{1}(0, n) \cup P_{2}(0, n) \cup P_{3}(0, n) \cup P_{4}(0, n) \cup \bar{P}_{1}(0, n) \cup \bar{P}_{2}(0, n) \\
& \cup \bar{P}_{3}(0, n) \cup P_{7}(0, n) \cup P_{8}(0, n)
\end{aligned}
$$

Let $\lambda \in Q(0, n)$, define

$$
\Phi(\lambda)= \begin{cases}\phi_{1}(\lambda), & \text { if } \lambda \in Q_{1}(0, n) \\ \phi_{2}(\lambda), & \text { if } \lambda \in Q_{2}(0, n) \\ \phi_{3}(\lambda), & \text { if } \lambda \in Q_{3}(0, n) \\ \phi_{4}(\lambda), & \text { if } \lambda \in Q_{4}(0, n) ; \\ \psi_{1}(\lambda), & \text { if } \lambda \in \bar{Q}_{1}(0, n) ; \\ \psi_{2}(\lambda), & \text { if } \lambda \in \bar{Q}_{2}(0, n) ; \\ \psi_{3}(\lambda), & \text { if } \lambda \in \bar{Q}_{3}(0, n) \\ \psi_{4}(\lambda), & \text { if } \lambda \in \bar{Q}_{4}(0, n) \\ \psi_{5}(\lambda), & \text { if } \lambda \in \bar{Q}_{5}(0, n)\end{cases}
$$

From Lemmas 4.2 to 4.5 and Lemmas 5.1 to 5.5 , it immediately follows that $\Phi$ is an injection from $Q(0, n)$ to $P(0, n)$. This completes the proof.

By a closer examination of the injections in the proof of Theorem 4.1, we can characterize the numbers $n$ and $m$ for which $N_{\leq m}(n)=M_{\leq m}(n)$. The details are omitted.

## 6 Connection to Theorem 1.7

In this section, we establish a connection between Conjecture 1.3 and Theorem 1.7 of Andrews, Chan and Kim. More precisely, we relate the positive rank (crank) moments $\bar{N}_{k}(n)$ $\left(\bar{M}_{k}(n)\right)$ to the functions $N_{\leq m}(n)\left(M_{\leq m}(n)\right)$ defined by Andrews, Dyson and Rhoades. Based on this connection, it can be seen that Theorem 1.7 of Andrews, Chan and Kim on the positive rank and crank moments can be deduced from Conjecture 1.3. This leads to an alternative proof of the theorem of Andrews, Chan and Kim.

Theorem 6.1. For $k \geq 1$ and $n \geq 1$, we have

$$
\begin{align*}
& \bar{N}_{k}(n)=\frac{1}{2} \sum_{m=1}^{+\infty}\left(m^{k}-(m-1)^{k}\right)\left(p(n)-N_{\leq m-1}(n)\right)  \tag{6.1}\\
& \bar{M}_{k}(n)=\frac{1}{2} \sum_{m=1}^{+\infty}\left(m^{k}-(m-1)^{k}\right)\left(p(n)-M_{\leq m-1}(n)\right) \tag{6.2}
\end{align*}
$$

Proof. We only give a proof of (6.1) since (6.2) can be justified in the same vain. Recall that

$$
\begin{equation*}
\bar{N}_{k}(n)=\sum_{j=1}^{+\infty} j^{k} N(j, n) \tag{6.3}
\end{equation*}
$$

Express (6.3) in the following form:

$$
\begin{aligned}
\bar{N}_{k}(n) & =\sum_{j=1}^{+\infty} N(j, n)\left(\sum_{m=1}^{j} m^{k}-\sum_{m=1}^{j}(m-1)^{k}\right) \\
& =\sum_{j=1}^{+\infty} \sum_{m=1}^{j}\left(m^{k}-(m-1)^{k}\right) N(j, n)
\end{aligned}
$$

Changing the order of summations, we find that

$$
\begin{equation*}
\bar{N}_{k}(n)=\sum_{m=1}^{+\infty}\left(m^{k}-(m-1)^{k}\right) \sum_{j=m}^{+\infty} N(j, n) \tag{6.4}
\end{equation*}
$$

Writing the second sum in (6.4) as

$$
\begin{equation*}
\sum_{j=m}^{+\infty} N(j, n)=\sum_{j=-\infty}^{+\infty} N(j, n)-\sum_{j=-\infty}^{m-1} N(j, n) \tag{6.5}
\end{equation*}
$$

and substituting the relations

$$
\sum_{r=-\infty}^{\infty} N(r, n)=p(n)
$$

and

$$
\sum_{j=-\infty}^{m-1} N(j, n)=p(-m+1, n)
$$

as given by (2.1) and (2.3) into (6.5), we deduce that

$$
\begin{equation*}
\sum_{j=m}^{+\infty} N(j, n)=p(n)-p(-m+1, n) \tag{6.6}
\end{equation*}
$$

Replacing $m$ by $m-1$ in (2.4) yields

$$
\begin{equation*}
p(-m+1, n)=\frac{p(n)+N_{\leq m-1}(n)}{2} . \tag{6.7}
\end{equation*}
$$

Substituting (6.7) into (6.6), we obtain

$$
\begin{equation*}
\sum_{j=m}^{+\infty} N(j, n)=\frac{p(n)-N_{\leq m-1}(n)}{2} \tag{6.8}
\end{equation*}
$$

Combining (6.4) and (6.8), we arrive at relation (6.1). This completes the proof.
In view of Theorem 6.1, it can be seen that Theorem 1.7 follows from Conjecture 1.3. Proof of Theorem 1.7. Subtracting (6.1) from (6.2) in Theorem 6.1, we obtain

$$
\begin{equation*}
\bar{M}_{k}(n)-\bar{N}_{k}(n)=\frac{1}{2} \sum_{m=1}^{+\infty}\left(m^{k}-(m-1)^{k}\right)\left(N_{\leq m-1}(n)-M_{\leq m-1}(n)\right) . \tag{6.9}
\end{equation*}
$$

From the definitions of the rank and crank, we have for $m \geq n+1$,

$$
\begin{aligned}
N_{\leq m-1}(n) & =p(n) \\
M_{\leq m-1}(n) & =p(n)
\end{aligned}
$$

It follows that for $m \geq n+1$

$$
\begin{equation*}
N_{\leq m-1}(n)-M_{\leq m-1}(n)=0 . \tag{6.10}
\end{equation*}
$$

For $m=n$, from the definitions of the rank and crank, we find that

$$
\begin{aligned}
& N_{\leq n-1}(n)=p(n) \\
& M_{\leq n-1}(n)=p(n)-2
\end{aligned}
$$

Consequently,

$$
\begin{equation*}
N_{\leq n-1}(n)-M_{\leq n-1}(n)=2 . \tag{6.11}
\end{equation*}
$$

Substituting (6.10) and (6.11) into (6.9), we obtain

$$
\begin{gather*}
\bar{M}_{k}(n)-\bar{N}_{k}(n)=\frac{1}{2} \sum_{m=1}^{n-1}\left(m^{k}-(m-1)^{k}\right)\left(N_{\leq m-1}(n)-M_{\leq m-1}(n)\right) \\
+n^{k}-(n-1)^{k} \tag{6.12}
\end{gather*}
$$

Since $m^{k}-(m-1)^{k}>0$ for $m \geq 1$ and $k \geq 1$, by Conjecture 1.3, that is, $N_{\leq m-1}(n)-$ $M_{\leq m-1}(n) \geq 0$, we reach the assertion that $\bar{M}_{k}(n)-\bar{N}_{k}(n)>0$ for $n \geq 1$ and $k \geq 1$. This completes the proof.

Acknowledgments. We wish to thank the referees for helpful suggestions. This work was supported by the 973 Project, the PCSIRT Project of the Ministry of Education, and the National Science Foundation of China.

## References

[1] G.E. Andrews, Partitions, Durfee symbols, and the Atkin-Garvan moments of ranks, Invent. Math. 169 (2007) 37-73.
[2] G.E. Andrews, The number of smallest parts in the partitions of $n$, J. Reine Angew. Math. 624 (2008) 133-142.
[3] G.E. Andrews, S.H. Chan and B. Kim, The odd moments of ranks and cranks, J. Combin. Theory A 120 (2013) 77-91.
[4] G.E. Andrews, F.J. Dyson and R.C. Rhoades, On the distribution of the spt-crank, Mathematics 1(2013) 76-88.
[5] G.E. Andrews and F.G. Garvan, Dyson's crank of a partition, Bull. Amer. Math. Soc. 18 (1988) 167-171.
[6] G.E. Andrews, F.G. Garvan and J.L. Liang, Combinatorial interpretations of congruences for the spt-function, Ramanujan J. 29 (2012) 321-338.
[7] A.O.L. Atkin and F. Garvan, Relations between the ranks and cranks of partitions, Ramanujan J. 7 (2003) 343-366.
[8] A. Berkovich and F.G. Garvan, Some observations on Dyson's new symmetries of partitions, J. Combin. Theory A 100 (2002) 61-93.
[9] K. Bringmann and K. Mahlburg, Asymptotic inequalities for positive crank and rank moments, Trans. Amer. Math. Soc. 366 (2014) 1073-1094.
[10] F.J. Dyson, Some guesses in the theory of partitions, Eureka (Cambridge) 8 (1944) 10-15.
[11] F.J. Dyson, A new symmetry of partitions, J. Combin. Theory A 7 (1969) 56-61.
[12] F.J. Dyson, Mappings and symmetries of partitions, J. Combin. Theory A 51 (1989) 169-180.
[13] A. Folsom and K. Ono, The spt-function of Andrews, Proc. Natl. Acad. Sci. USA 105 (2008) 20152-20156.
[14] F.G. Garvan, Higher order spt-functions, Adv. Math. 228 (2011) 241-265.
[15] F.G. Garvan, Congruences for Andrews' spt-function modulo powers of 5, 7 and 13, Trans. Amer. Math. Soc. 364 (2012) 4847-4873.
[16] B. Gordon and L. Houten, Notes on plane partitions II, J. Combin. Theory 4 (1968) 81-99.
[17] S.J. Kaavya, Crank 0 partitions and the parity of the partition function, Int. J. Number Theory 7 (2011) 793-801.
[18] K. Ono, Congruences for the Andrews spt-function, Proc. Natl. Acad. Sci. USA 108 (2011) 473-476.

