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Abstract

By introducing k-marked Durfee symbols, Andrews found a combinatorial in-
terpretation of the 2k-th symmetrized moment η2k(n) of ranks of partitions of n in
terms of (k + 1)-marked Durfee symbols of n. In this paper, we consider the k-th
symmetrized positive moment η̄k(n) of ranks of partitions of n which is defined as
the truncated sum over positive ranks of partitions of n. As combinatorial interpre-
tations of η̄2k(n) and η̄2k−1(n), we show that for given k and i with 1 6 i 6 k + 1,
η̄2k−1(n) equals the number of (k + 1)-marked Durfee symbols of n with the i-th
rank being zero and η̄2k(n) equals the number of (k+1)-marked Durfee symbols of n
with the i-th rank being positive. The interpretations of η̄2k−1(n) and η̄2k(n) are in-
dependent of i, and they imply the interpretation of η2k(n) given by Andrews since
η2k(n) equals η̄2k−1(n) plus twice of η̄2k(n). Moreover, we obtain the generating
functions of η̄2k(n) and η̄2k−1(n).

Keywords: rank of a partition; k-marked Durfee symbol; moment of ranks

1 Introduction

This paper is concerned with a combinatorial study of the symmetrized positive moments
of ranks of partitions. The notion of symmetrized moments was introduced by Andrews
[1]. Any odd symmetrized moment is zero because of the symmetry of ranks. For an
even symmetrized moment, Andrews found a combinatorial interpretation by introducing
k-marked Durfee symbols. It is natural to investigate the combinatorial interpretation of
an odd symmetrized moment which is defined as a truncated sum over positive ranks of
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partitions of n. We give combinatorial interpretations of both the even and the odd posi-
tive moments in terms of k-marked Durfee symbols, which also lead to the combinatorial
interpretation of an even symmetrized moment of ranks given by Andrews.

The rank of a partition λ introduced by Dyson [6] is defined as the largest part minus
the number of parts. Let N(m,n) denote the number of partitions of n with rank m.
The following generating function of N(m,n) was conjectured by Dyson [6] in 1944 and
proved by Atkin and Swinnerton-Dyer [3] in 1954. A combinatorial proof was found by
Dyson [7] in 1969.

Theorem 1.1. For given integer m, we have

+∞∑
n=0

N(m,n)qn =
1

(q; q)∞

+∞∑
n=1

(−1)n−1qn(3n−1)/2+|m|n(1− qn). (1.1)

Recently, Andrews [1] introduced the k-th symmetrized moment ηk(n) of ranks of
partitions of n as given by

ηk(n) =
+∞∑

m=−∞

(
m+ bk−1

2
c

k

)
N(m,n). (1.2)

It can be easily seen that for any k, ηk(n) is a linear combination of the moments Nj(n)
of ranks given by Atkin and Garvan [4]

Nj(n) =
∞∑

m=−∞

mjN(m,n).

For example,

η6(n) =
1

720
N6(n)− 1

144
N4(n) +

1

180
N2(n).

In view of the symmetry N(−m,n) = N(m,n), we have η2k+1(n) = 0. As for an even
symmetrized moment η2k(n), Andrews gave the following combinatorial interpretation by
introducing k-marked Durfee symbols. For the definition of k-marked Durfee symbols,
see Section 2.

Theorem 1.2 (Andrews [1]). For any k > 1, η2k(n) is equal to the number of (k + 1)-
marked Durfee symbols of n.

Andrews [1] proved the above theorem by using the k-fold generalization of Watson’s
q-analog of Whipple’s theorem. Ji [9] found a combinatorial proof of Theorem 1.2 by
establishing a map from k-marked Durfee symbols to ordinary partitions. Kursungoz [10]
gave another proof of Theorem 1.2 by using an alternative representation of k-marked
Durfee symbols.

In this paper, we introduce the k-th symmetrized positive moment η̄k(n) of ranks as
given by

ηk(n) =
∞∑
m=1

(
m+ bk−1

2
c

k

)
N(m,n),
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or equivalently,

η2k−1(n) =
∞∑
m=1

(
m+ k − 1

2k − 1

)
N(m,n) (1.3)

and

η2k(n) =
∞∑
m=1

(
m+ k − 1

2k

)
N(m,n). (1.4)

Furthermore, it is easy to see that for any k, η̄k(n) is a linear combination of the positive
moments N j(n) of ranks introduced by Andrews, Chan and Kim [2] as given by

N j(n) =
∞∑
m=1

mjN(m,n).

For example,

η̄4(n) =
1

24
N4(n)− 1

12
N3(n)− 1

24
N2(n) +

1

12
N1(n),

η̄5(n) =
1

120
N5(n)− 1

24
N3(n) +

1

30
N1(n).

By the symmetry N(−m,n) = N(m,n), it is readily seen that

η2k(n) = 2η2k(n) + η2k−1(n). (1.5)

The main objective of this paper is to give combinatorial interpretations of η̄2k(n) and
η̄2k−1(n). We show that for given k and i with 1 6 i 6 k+ 1, η̄2k−1(n) equals the number
of (k + 1)-marked Durfee symbols of n with the i-th rank being zero and η̄2k(n) equals
the number of (k + 1)-marked Durfee symbols of n with the i-th rank being positive. It
should be noted that η̄2k−1(n) and η̄2k(n) are independent of i since the ranks of k-marked
Durfee symbols are symmetric, see Andrews [1, Corollary 12].

With the aid of Theorem 2.1 and Theorem 2.2 together with the generating function
(1.1) of N(m,n), we obtain the generating functions of η̄2k(n) and η̄2k−1(n).

2 Combinatorial interpretations

In this section, we give combinatorial interpretations of η̄2k−1(n) and η̄2k(n) in terms of
k-marked Durfee symbols. For a partition λ of n, we write λ = (λ1, λ2, . . . , λs) with the
entries λi in nonincreasing order such that λ1 + λ2 + · · · + λs = n. We assume that all
the parts of λ are positive. The number of parts of λ is called the length of λ, denoted
by `(λ). The weight of λ is the sum of parts, denoted |λ|.

Recall that a k-marked Durfee symbol of n introduced by Andrews [1] is a two-line
array composed of k pairs of partitions (α1, β1), (α2, β2), . . . , (αk, βk) along with a positive
integer D which is represented in the following form:

τ =

(
αk, αk−1, . . . , α1

βk, βk−1, . . . , β1

)
D

,
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where the partitions αi = (αi1, α
i
2, . . . , α

i
s) and βi = (βi1, β

i
2, . . . , β

i
s) satisfy the following

four conditions:

(1) The partitions αi (1 6 i < k) are nonempty, while αk and βi (1 6 i 6 k) are allowed
to be empty;

(2) βi−11 6 αi−11 6 min{αis, βis} for 2 6 i 6 k;

(3) αk1, βk1 6 D;

(4)
∑k

i=1(|αi|+ |βi|) +D2 = n.

Let

τ =

(
αk, αk−1, . . . , α1

βk, βk−1, . . . , β1

)
D

be a k-marked Durfee symbol. The pair (αi, βi) of partitions is called the i-th vector of
τ . Andrews defined the i-th rank ρi(τ) of τ as follows

ρi(τ) =

{
`(αi)− `(βi)− 1, for 1 6 i < k,

`(αk)− `(βk), for i = k.

For example, consider the following 3-marked Durfee symbol

τ =


α3︷ ︸︸ ︷

53, 43,

α2︷ ︸︸ ︷
42, 32, 32, 22,

α1︷︸︸︷
21

43︸︷︷︸
β3

, 32, 22, 22︸ ︷︷ ︸
β2

, 21, 21︸ ︷︷ ︸
β1


5

.

We have ρ1(τ) = −2, ρ2(τ) = 0, and ρ3(τ) = 1.
For an odd symmetrized moment η̄2k−1(n), we have the following combinatorial inter-

pretation.

Theorem 2.1. For given positive integers k and i with 1 6 i 6 k + 1, η̄2k−1(n) is equal
to the number of (k + 1)-marked Durfee symbols of n with the i-th rank equal to zero.

For the even case, we have the following interpretation.

Theorem 2.2. For given positive integers k and i with 1 6 i 6 k + 1, η̄2k(n) is equal to
the number of (k + 1)-marked Durfee symbols of n with the i-th rank being positive.

The proofs of the above two interpretations are based on the following partition iden-
tity obtained by Ji [9]. We shall adopt the notation Dk(m1,m2, . . . ,mk;n) as used by
Andrews [1] to denote the number of k-marked Durfee symbols of n with the i-th rank
equal to mi for 1 6 i 6 k.
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Theorem 2.3. For k > 2 and n > 1, we have

Dk(m1, . . . ,mk;n) =
∞∑

t1,...,tk−1=0

N

(
k∑
i=1

|mi|+ 2
k−1∑
i=1

ti + k − 1, n

)
. (2.1)

To derive the above interpretations of η̄2k−1(n) and η̄2k(n), we also need the following
symmetric property given by Andrews [1]. Boulet and Kursungoz [5] found a combinato-
rial proof of this fact.

Theorem 2.4. For k > 2 and n > 1, Dk(m1, . . . ,mk;n) is symmetric in m1, m2, . . . ,mk.

We are now in a position to prove Theorem 2.1 and Theorem 2.2.
Proof of Theorem 2.1. By Theorem 2.4, it suffices to show that

∞∑
m2,m3,...,mk+1=−∞

Dk+1(0,m2,m3, . . . ,mk+1;n) = η̄2k−1(n). (2.2)

Using Theorem 2.3, we get

∞∑
m2,m3,...,mk+1=−∞

Dk+1(0,m2,m3, . . . ,mk+1;n)

=
∞∑

m2,m3,...,mk+1=−∞

∞∑
t1,...,tk=0

N

(
k+1∑
i=2

|mi|+ 2
k∑
i=1

ti + k, n

)
. (2.3)

For k > 1 and m > k, let ck(m) denote the number of integer solutions to the equation

|m2|+ · · ·+ |mk+1|+ 2t1 + · · ·+ 2tk = m− k,

where mi are integers and ti are nonnegative integers. It is easy to see that the generating
function of ck(m) is equal to

∞∑
m=k

ck(m)qm−k = (1 + 2q + 2q2 + 2q3 + · · · )k(1 + q2 + q4 + q6 + · · · )k

=

(
1 + q

1− q

)k (
1

1− q2

)k
=

1

(1− q)2k

=
∞∑
m=k

(
m+ k − 1

2k − 1

)
qm−k. (2.4)

Hence

ck(m) =

(
m+ k − 1

2k − 1

)
,

the electronic journal of combinatorics 21(1) (2014), #P1.29 5



and (2.3) can be written as

∞∑
m2,m3,...,mk+1=−∞

Dk+1(0,m2,m3, . . . ,mk+1;n)

=
∞∑
m=1

(
m+ k − 1

2k − 1

)
N(m,n),

which is the defining expression of η̄2k−1(n). This completes the proof.

Proof of Theorem 2.2. Similarly, by Theorem 2.4, it is sufficient to show that
∞∑

m1>0

m2,m3,...,mk+1=−∞

Dk+1(m1,m2, . . . ,mk+1;n) = η̄2k(n). (2.5)

Invoking Theorem 2.3, we get
∞∑

m1>0

m2,m3,...,mk+1=−∞

Dk+1(m1,m2, . . . ,mk+1;n)

=
∞∑

m1>0

m2,m3,...,mk+1=−∞

∞∑
t1,...,tk=0

N

(
m1 +

k+1∑
i=2

|mi|+ 2
k∑
i=1

ti + k, n

)
. (2.6)

For k > 1 and m > k+1, let c̄k(m) denote the number of integer solutions to the equation

m1 + |m2|+ · · ·+ |mk+1|+ 2t1 + · · ·+ 2tk = m− k,

where m1 is a positive integer, mi (2 6 i 6 k + 1) are integers and ti are nonnegative
integers. An easy computation shows that

∞∑
m=k+1

c̄k(m)qm−k =
q

(1− q)2k+1
, (2.7)

so that

c̄k(m) =

(
m+ k − 1

2k

)
.

Thus, the sum on the right hand side of (2.6) becomes

∞∑
m=1

(
m+ k − 1

2k

)
N(m,n),

which is in accordance with the definition of η̄2k(n), and hence the proof is complete.
Note that the number Dk(m1, . . . ,mk;n) has the mirror symmetry with respect to

each mi, that is, for 1 6 i 6 k, we have

Dk(m1, . . . ,mi, . . . ,mk;n) = Dk(m1, . . . ,−mi, . . . ,mk;n).

Using this symmetry property, Theorem 2.2 can be restated as follows.
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Theorem 2.5. For given positive integers k and i with 1 6 i 6 k+ 1, η̄2k(n) is also equal
to the number of (k + 1)-marked Durfee symbols of n with the i-th rank being negative.

η1(5) η2(5) η2(5)(
12 12 12 11

)
1

(
11 11 11 11

)
1

(
11

11 11 11

)
1(

12 11 11

11

)
1

(
12 11 11 11

)
1

(
12 11

11 11

)
1(

12 12 11

12

)
1

(
12 12 11 11

)
1

(
12 12 11

11

)
1(

11

12 12 12

)
1

(
11 11 11

11

)
1

(
11 11

11 11

)
1(

11 11

12 11

)
1

(
11 11 11

12

)
1

(
11

12 11 11

)
1(

12 11

12 12

)
1

(
12 11 11

12

)
1

(
12 11

12 11

)
1(

11

)
2

(
11 11

12 12

)
1

(
11

12 12 11

)
1

Table 2.1: 2-Marked Durfee Symbols of 5.

For example, for n = 5, k = 1 and i = 1, there are twenty-one 2-marked Durfee symbols
of 5 as listed in Table 2.1. The first column in Table 2.1 gives seven 2-marked Durfee
symbols τ with ρ1(τ) = 0, the second column contains seven 2-marked Durfee symbols
τ with ρ1(τ) > 0 and the third column contains seven 2-marked Durfee symbols τ with
ρ1(τ) < 0. It can be verified that η1(5) = 7, η2(5) = 7 and η2(5) = η1(5) + 2η2(5) = 21.

3 The generating functions of η̄2k−1(n) and η̄2k(n)

In this section, we obtain the generating functions of η̄2k−1(n) and η̄2k(n) with the aid
of Theorem 2.1 and Theorem 2.2. In doing so, we use the generating function ofN(m,n) to
derive the generating functions ofDk+1(0,m2, . . . ,mk+1;n) andDk+1(m1,m2, . . . ,mk+1;n).
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Theorem 3.1. For k > 1, we have

∞∑
m2,...,mk+1=−∞

∞∑
n=0

Dk+1(0,m2, . . . ,mk+1;n)xm2
1 · · ·x

mk+1

k qn

=
1

(q; q)∞

∞∑
n=1

(−1)n−1qn(3n−1)/2+kn
(1− qn)∏k

j=1(1− xjqn)(1− x−1j qn)
. (3.1)

Proof. Let

Gk(x1, . . . , xk; q) =
∞∑

m2,...,mk+1=−∞

∞∑
n=0

Dk+1(0,m2, . . . ,mk+1;n)xm2
1 · · ·x

mk+1

k qn.

By Theorem 2.3, we have

Gk(x1, . . . , xk; q)

=
∞∑

m2,...,mk+1=−∞

∞∑
t1,...,tk=0

xm2
1 · · · x

mk+1

k

∞∑
n=0

N

(
k+1∑
i=2

|mi|+ 2
k∑
i=1

ti + k, n

)
qn. (3.2)

Using the generating function (1.1) of N(m,n) with m replaced by
∑k+1

i=2 |mi|+2
∑k

i=1 ti+
k, we find that

∞∑
n=0

N

(
k+1∑
i=2

|mi|+ 2
k∑
i=1

ti + k, n

)
qn

=
1

(q; q)∞

∞∑
n=1

(−1)n−1qn(3n−1)/2+n(
∑k+1

i=2 |mi|+2
∑k

i=1 ti+k)(1− qn). (3.3)

Substituting (3.3) into (3.2), we get

Gk(x1, . . . , xk; q) =
∞∑

m2,...,mk+1=−∞

∞∑
t1,...,tk=0

xm2
1 · · ·x

mk+1

k

× 1

(q; q)∞

∞∑
n=1

(−1)n−1qn(3n−1)/2+n(
∑k+1

i=2 |mi|+2
∑k

i=1 ti+k)(1− qn).

(3.4)

Write (3.4) in the following form

Gk(x1, . . . , xk; q) =
1

(q; q)∞

∞∑
n=1

(−1)n−1qn(3n−1)/2+kn(1− qn)

×
∞∑

m2,...,mk+1=−∞

∞∑
t1,...,tk=0

xm2
1 · · ·x

mk+1

k qn(
∑k+1

i=2 |mi|+2
∑k

i=1 ti). (3.5)
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Notice that

+∞∑
a=−∞

+∞∑
b=0

xaqn(|a|+2b) =
1

(1− xqn)(1− x−1qn)
. (3.6)

Applying the above formula (3.6) repeatedly to (3.5), we deduce that

Gk(x1, . . . , xk; q) =
1

(q; q)∞

∞∑
n=1

(−1)n−1qn(3n−1)/2+kn
(1− qn)∏k

j=1(1− xjqn)(1− x−1j qn)
,

as required.
Setting xj = 1 for 1 6 j 6 k in Theorem 3.1 and applying Theorem 2.1, we arrive at

the following generating function of η̄2k−1(n).

Corollary 3.2. For k > 1, we have

∞∑
n=1

η̄2k−1(n)qn =
1

(q; q)∞

∞∑
n=1

(−1)n−1qn(3n−1)/2+kn
1

(1− qn)2k−1
. (3.7)

Since η̄1(n) = N1(n), when taking k = 1 in (3.7), we are led to the generating function
for N1(n) as given by Andrews, Chan and Kim in [2, Theorem 1].

The following generating function can be derived by using the same reasoning as in
the proof of Theorem 3.1.

Theorem 3.3. For k > 1, we have

∞∑
m1>0

m2,...,mk+1=−∞

∞∑
n=1

Dk+1(m1,m2, . . . ,mk+1;n)xm1
1 · · ·x

mk+1

k+1 qn

=
1

(q; q)∞

∞∑
n=1

(−1)n−1qn(3n+1)/2+kn x1(1− qn)

(1− x1qn)
∏k+1

j=2(1− xjqn)(1− x−1j qn)
. (3.8)

Setting xj = 1 for 1 6 j 6 k + 1 in Theorem 3.3 and using Theorem 2.2, we come to
the following generating function of η̄2k(n).

Corollary 3.4. For k > 1, we have

∞∑
n=1

η̄2k(n)qn =
1

(q; q)∞

∞∑
n=1

(−1)n−1qn(3n+1)/2+kn 1

(1− qn)2k
. (3.9)
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