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Abstract. An ordered partition of [n] = {1, 2, . . . , n} is a partition whose blocks are
endowed with a linear order. Let OPn,k be the set of ordered partitions of [n] with k
blocks and OPn,k(σ) be the set of ordered partitions in OPn,k that avoid a pattern σ.
For any permutation pattern σ of length three, Godbole, Goyt, Herdan and Pudwell
obtained formulas for the number of ordered partitions of [n] with 3 blocks avoiding σ
as well as the number of ordered partitions of [n] with n−1 blocks avoiding σ. They also
showed that |OPn,k(σ)| = |OPn,k(123)| for any permutation σ of length 3. Moreover,
they raised a question concerning the enumeration of OPn,k(123), and conjectured
that the number of ordered partitions of [2n] with blocks of size 2 avoiding σ satisfied
a second order linear recurrence relation. In answer to the question of Godbole, et al.,
we establish a connection between |OPn,k(123)| and the number en,d of 123-avoiding
permutations of [n] with d descents. Using the bivariate generating function of en,d
given by Barnabei, Bonetti and Silimbani, we obtain the bivariate generating function
of |OPn,k(123)|. Meanwhile, we confirm the conjecture of Godbole, et al. by deriving
the generating function for the number of 123-avoiding ordered partitions of [2n] with
n blocks of size 2.
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1 Introduction

The notion of pattern avoiding permutations was introduced by Knuth [10], and it
has been extensively studied. Klazar [7] initiated the study of pattern avoiding set
partitions. Further studies of pattern avoiding set partitions can be found in [4, 5, 8,
9, 11]. Recently, Godbole, Goyt, Herdan and Pudwell [3] considered pattern avoiding
ordered set partitions. Let [n] = {1, 2, . . . , n}. For a permutation σ of length 3,
Godbole, et al. obtained a formula for the number of σ-avoiding ordered partitions of
[n] with 3 blocks and a formula for the number of σ-avoiding ordered partitions of [n]
with n−1 blocks. Moreover, they raised a question of finding the number of σ-avoiding
ordered partitions of [n] with k blocks.

In answer to the above question, we establish a connection between the number of
123-avoiding ordered partitions of [n] with k blocks and the number of 123-avoiding
permutations of [n] with d descents. This enables us to derive a bivariate generat-
ing function for the number of 123-avoiding ordered partitions of [n] with k blocks.
Meanwhile, we confirm the conjecture of Godbole, Goyt, Herdan and Pudwell [3] on
a recurrence relation concerning the number of 123-avoiding ordered partitions of [2n]
with blocks of size 2.

Let us give an overview of notation and terminology. Let Sn be the set of per-
mutations of [n]. Given a permutation π = π1π2 · · · πn ∈ Sn and a permutation
σ = σ1σ2 · · ·σk ∈ Sk, where 1 ≤ k ≤ n, we say that π contains a pattern σ if
there exists a subsequence πi1πi2 · · · πik (1 ≤ i1 < i2 < · · · < ik ≤ n) of π that is
order-isomorphic to σ, in other words, for all l,m ∈ [k], we have πil < πim if and only
if σl < σm. Otherwise, we say that π avoids a pattern σ, or π is σ-avoiding. Let Sn(σ)
denote the set of permutations of Sn that avoid a pattern σ. For example, 41532 is
123-avoiding, while it contains a pattern 312 corresponding to the subsequence 412.

A partition π of a set [n], written π ` [n], is a family of nonempty, pairwise disjoint
subsets B1, B2, . . . , Bk of [n] such that ∪ki=1Bi = [n], where each Bi (1 ≤ i ≤ k) is called
a block. We write π = B1/B2/ · · · /Bk and define the length of π, denoted b(π), to be
the number of blocks. An ordered partition of [n] is a partition of [n] whose blocks are
endowed with a linear order. Let OPn,k denote the set of ordered partitions of [n] with
k blocks, let OPn denote the set of ordered partitions of [n], and let OP [b1,b2,...,bk] denote
the set of ordered partitions of [b1 + b2 + · · ·+ bk] such that the i-th block contains bi
elements. If b1 = · · · = bk = s, we write OP [sk] for OP [b1,b2,...,bk]. Let opn,k = |OPn,k|,
opn = |OPn|, op[b1,b2,...,bk]

= |OP [b1,b2,...,bk]| and op[sk] = |OP [sk]|.

Given an ordered partition π = B1/B2/ · · · /Bk ∈ OPn,k and a permutation σ =
σ1σ2 · · ·σm ∈ Sm, we say that π contains a pattern σ if there exist blocksBi1 , Bi2 , . . . , Bim

with 1 ≤ i1 < i2 < · · · < im ≤ k and elements b1 ∈ Bi1 , b2 ∈ Bi2 , . . . , bm ∈ Bim
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such that b1b2 · · · bm is order-isomorphic to σ. Otherwise, we say that π avoids a pat-
tern σ. For example, the ordered partition 14/35/2 ∈ OP5,3 is 123-avoiding, while
it contains a pattern 132. Similarly, let OPn,k(σ) denote the set of ordered parti-
tions of OPn,k that are σ-avoiding. Let opn,k(σ) = |OPn,k(σ)|, opn(σ) = |OPn(σ)|,
op[b1,b2,...,bk]

(σ) = |OP [b1,b2,...,bk](σ)| and op[sk](σ) = |OP [sk](σ)|.

Godbole, et al. [3] obtained the following formulas for opn,3(σ) and opn,n−1(σ) for
any σ ∈ S3.

Theorem 1.1 For n ≥ 1, 1 ≤ k ≤ n, and for any permutation σ of length 3, we have

opn,3(σ) =

(
n2

8
+

3n

8
− 2

)
2n + 3,

opn,n−1(σ) =
3(n− 1)2

n(n+ 1)

(
2n− 2

n− 1

)
. (1.1)

Godbole, et al. [3] also showed that

opn,k(σ) = opn,k(123), (1.2)

op[b1,b2,...,bk]
(σ) = op[b1,b2,...,bk]

(123) (1.3)

for any σ ∈ S3. They raised a question concerning the enumeration of OPn,k(123). Us-
ing Zeilberger’s Maple package FindRec [12], they conjectured that op[2k](123) satisfied
the following second order linear recurrence relation.

Conjecture 1.1 For k ≥ 0, we have

op[2k+2](123) =
329k3 + 1215k2 + 1426k + 528

2(k + 2)(2k + 5)(7k + 5)
op[2k+1](123)

+
3(k + 1)(2k + 1)(7k + 12)

(k + 2)(2k + 5)(7k + 5)
op[2k](123). (1.4)

In this paper, we provide an answer to the above question by deriving a bivariate
generating function for opn,k(123) and w confirm the conjectured recurrence relation
by computing the generating function of op[2k](123).
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2 The generating function of opn,k(123)

In this section, we obtain the bivariate generating function of opn,k(123). Let F (x, y)
be the generating function of opn,k(123), that is,

F (x, y) =
∑
n≥0

∑
k≥0

opn,k(123)xnyk. (2.1)

We show that F (x, y) can be expressed in terms of the bivariate generating function
E(x, y) of 123-avoiding permutations of [n] with respect to the number of descents.
More precisely, for a permutation σ = σ1σ2 · · ·σn ∈ Sn, the descent set of σ is defined
by

D(σ) = {i : σi > σi+1}
and the number of descents of σ is denoted by des(σ) = |D(σ)|. Barnabei, Bonetti and
Silimbani [2] defined the generating function

E(x, y) =
∑
n≥0

∑
σ∈Sn(123)

xnydes(σ) =
∑
n≥0

∑
d≥0

en,dx
nyd, (2.2)

where
en,d = |{σ | σ ∈ Sn(123), des(σ) = d}|.

Furthermore, they obtained the following formula:

E(x, y) =
−1 + 2xy + 2x2y − 2xy2 − 4x2y2 + 2x2y3 +

√
1− 4xy − 4x2y + 4x2y2

2xy2(xy − 1− x)
.

(2.3)

The following theorem gives the generating function F (x, y) in terms of E(x, y).

Theorem 2.1 We have
F (x, y) = E(xy, 1 + y−1),

which implies that

F (x, y) =
−y − 2xy − 2x+ 2x2y + 2x2 + y

√
1− 4xy − 4x+ 4x2y + 4x2

2x(y + 1)2(x− 1)
. (2.4)

To prove the above theorem, we establish a connection between opn,k(123) and en,d.

Theorem 2.2 For n ≥ 1 and 1 ≤ k ≤ n, we have

opn,k(123) =
n−1∑

d=n−k

(
d

n− k

)
en,d. (2.5)

4



Proof. Define a map ϕ : OPn,k(123) → Sn(123) as a canonical representation of an
ordered partition. Given an ordered partition π = B1/B2/ · · · /Bk ∈ OPn,k(123). If we
list the elements of each block in decreasing order and ignore the symbol ‘/’ between
two adjacent blocks, we get a permutation ϕ(π) = σ = σ1σ2 · · ·σn ∈ Sn. It can be
shown that ϕ is well-defined, that is, σ = ϕ(π) is a 123-avoiding permutation of Sn.
Assume to the contrary that σ contains a 123-pattern, that is, there exist i < j < l such
that σiσjσl is a 123-pattern in σ. By the construction of σ, we see that the elements
σi, σj and σl are in different blocks in π. This implies that σiσjσl is a 123-pattern of
π, a contradiction. Thus σ ∈ Sn(123). Moreover, according to the construction of σ,
we find that

des(σ) ≥
k∑
s=1

(|Bs| − 1) = n− k. (2.6)

Conversely, given a permutation σ = σ1σ2 · · ·σn in Sn(123) with d descents, we
aim to count the preimages π in OPn,k(123) such that ϕ(π) = σ. If d < n − k, by
inequality (2.6), it is impossible for any π in OPn,k(123) to be a preimage of σ. So we
may assume that d ≥ n− k. Let π′ = σ1/σ2/ · · · /σn. Clearly, ϕ(π′) = σ. If i ∈ D(σ),
we may merge σi and σi+1 of π′ into a block to form a new ordered partition π′′. It is
easily verified that ϕ(π′′) = σ and b(π′′) = n−1. Moreover, we may iterate this process
if des(π′′) > 0. Note that at each step we get a preimage of σ with one less block.
To obtain the preimages π with k blocks, we need to repeat this process n− k times.
Observe that the resulting ordered partition depends only on the positions we choose
in D(σ). Hence we conclude that there are

(
d

n−k

)
ordered partitions π in OPn,k(123)

such that ϕ(π) = σ. Hence the theorem follows from summing over d.

Now we are ready to prove Theorem 2.1.

Proof of Theorem 2.1. By Theorem 2.2, we have

n∑
k=0

opn,k(123)xnyk =
n∑
k=0

n−1∑
d=n−k

(
d

n− k

)
en,dx

nyk

=
n−1∑
d=0

n∑
k=n−d

(
d

n− k

)
en,dx

nyk

=
n−1∑
d=0

d∑
j=0

(
d

j

)
en,dx

nyn−j

=
n−1∑
d=0

en,d(xy)n(1 + y−1)d.
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Summing over n, we obtain that F (x, y) = E(xy, (1 + y−1)).

An alternative proof of the formula (2.4) for F (x, y) was given by Kasraoui [6].
Setting y = 1 in the generating function F (x, y), we are led to the generating function
of opn(123).

Corollary 2.3 Let H(x) be the generating function of opn(123), that is

H(x) =
∑
n≥0

opn(123)xn.

Then we have

H(x) =
1

2
+

1

1 +
√

1− 8x+ 8x2
.

The connection between opn,k(123) and en,d can be used to derive the following
generating function of opn,n−1(123).

Corollary 2.4 Let G(x) be the generating function of opn,n−1(123), that is,

G(x) =
∑
n≥1

opn,n−1(123)xn.

Then we have

G(x) =
2x2 − 7x+ 2 + 3x

√
1− 4x− 2

√
1− 4x

2x
√

1− 4x
. (2.7)

Proof. By Theorem 2.2, we have

opn,n−1(123) =
n−1∑
d=1

den,d. (2.8)

It follows that

G(x) =
∑
n≥1

n−1∑
d=1

den,dx
n

=
∂E(x, y)

∂y

∣∣∣
y=1

.

By expression (2.3) for E(x, y), we obtain (2.7).

Notice that formula (1.1) for opn,n−1 can be deduced from (2.7).
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3 The generating function of op[2k](123)

In this section, we compute the generating function of op[2k](123) which leads to the
recurrence relation of op[2k](123) as in Conjecture 1.1

Theorem 3.1 Let Q(x) be the generating function of op[2k](123), that is,

Q(x) =
∑
k≥0

op[2k](123)x2k.

Then we have

Q(x) =

√
2

1 + 2 x2 +
√

1− 12x2
. (3.1)

Let Q
′
(x), Q

′′
(x) and Q

′′′
(x) denote the first derivative, second derivative and third

derivative of Q(x), respectively. The following theorem shows that Q(x) satisfies a
third order differential equation.

Theorem 3.2 We have(
21

2
x7 +

329

8
x5 − 7

2
x3
)
Q

′′′
(x) +

(
99x6 +

1443

8
x4 − 5x2

)
Q

′′
(x)

+

(
207x5 +

717

8
x3 + 11x

)
Q

′
(x) + (72x4 − 12x2)Q(x) = 0. (3.2)

Equating coefficients of x2n+4 in (3.2), we obtain the recurrence relation (1.4) for
op[2k](123).

To prove Theorem 3.1, we construct a bijection between ordered partitions and
permutations on multisets. Given an ordered partition π = B1/B2/ · · · /Bk ∈ OPn,k,
its canonical sequence, denoted ψ(π), is defined to be a sequence ρ = ρ1ρ2 · · · ρn with
ρi = j if i ∈ Bj. Let W[1b12b2 ···kbk ] denote the set of permutations on a multiset

{1b1 , 2b2 , . . . , kbk}, where ir means r occurrences of i. It is easily verified that ψ is a
bijection between OP [b1,b2,...,bk] and W[1b12b2 ···kbk ].

Any permutation σ ∈ Sm corresponds naturally to a unique ordered partition of
[m] with each element in its own block. Define the canonical sequence of σ to be the
canonical sequence of the corresponding ordered partition. It is not hard to see that
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the canonical sequence of σ is its inverse σ−1. For example, the canonical sequence of
43512 is 45213.

By the definition of pattern avoiding ordered partitions, we see that an ordered par-
tition π contains a pattern σ if and only if its canonical sequence ψ(π) contains a pattern
σ−1. This implies that ψ is a bijection between OP [b1,b2,...,bk](σ) and W[1b12b2 ···kbk ](σ

−1),
where W[1b12b2 ···kbk ](τ) is the set of τ -avoiding permutations in W[1b12b2 ···kbk ]. Hence we
have

op[b1,b2,...,bk]
(σ) = |W[1b12b2 ···kbk ](σ

−1)|. (3.3)

In order to establish the recurrence relation for op[2k](123), we need to use op[2k,1](123)
and op[2k,1,1](123). Combining (3.3) and (1.3), we obtain

op[2n](123) =|W[1222···n2](132)|,

op[2n,1](123) =|W[1222···n2(n+1)](132)|,

op[2n,1,1](123) =|W[1222···n2(n+1)(n+2)](132)|.

Let

u2n = |W[1222···n2](132)|,

u2n+1 = |W[1222···n2(n+1)](132)|,

v2n = |W[1222···(n−1)2n(n+1)](132)|,

where we set u0 = v0 = 1 and set un = vn = 0 for n < 0.

We proceed to derive recurrence relations for u2n, u2n+1 and v2n that can be used
to obtain a system of equations on the generating functions. In particular, we get the
generating function of u2n, that is, the generating function of op[2n](123).

Let Ue(x), Uo(x) and V (x) denote the generating functions of u2n, u2n+1 and v2n,
namely,

Ue(x) =
∑
n≥0

u2nx
2n,

Uo(x) =
∑
n≥0

u2n+1x
2n+1,

V (x) =
∑
n≥0

v2nx
2n.

We need the following lemma due to Atkinson, Walker and Linton [1].
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Lemma 3.3 Given two permutations p = p1p2 · · · pn and q = q1q2 · · · qn of the same
multiset of [n], we have

|W[1p12p2 ···npn ](132)| = |W[1q12q2 ···nqn ](132)|.

The following theorem gives a recurrence relation for u2n and u2n+1.

Theorem 3.4 For n ≥ 0, we have

u2n+1 =
∑

i+j=2n

uiuj, (3.4)

which implies that

Uo(x) = x
(
U2
o (x) + U2

e (x)
)
. (3.5)

Proof. Assume that π ∈ W[1222···n2(n+1)](132). Write π in the form σ(n + 1)τ . Since π
is 132-avoiding, both σ and τ are 132-avoiding. Moreover, for any element r in σ and
any element s in τ , we have r ≥ s. Let k be the maximum number in τ . It can be seen
that τ contains all the numbers in the multiset {12, 22, . . . , n2, (n+1)} that are smaller
than k, that is, τ contains all the elements in the multiset {12, 22, . . . , (k − 1)2}.

There are two cases. If |τ | is even, then τ contains two occurrences of k. Thus τ is
in W[1222···k2](132), which is counted by u2k. Moreover, σ is in W[(k+1)2(k+2)2···n2](132).
It is easily seen that |W[(k+1)2(k+2)2···n2](132)| = |W[1222···(n−k)2](132)|, which is counted
by u2n−2k.

If |τ | is odd, then we have τ ∈ W[1222···(k−1)2k](132) and σ ∈ W[k(k+1)2(k+2)2···n2](132).
In this case, W[1222···(k−1)2k](132) is counted by u2k−1. By Lemma 3.3, we see that
|W[k(k+1)2···n2](132)| = |W[k2(k+1)2···(n−1)2n](132)|, which is counted by u2n+1−2k. Com-
bining the above two cases, we obtain (3.4).

Using (3.4), we obtain

Uo(x) =
∑
n≥0

u2n+1x
2n+1

= x
∑
n≥0

∑
i+j=2n

uiujx
2n

= x
∑
n≥0

∑
2i+2j=2n

u2iu2jx
2n + x

∑
n≥0

∑
2i+1+2j+1=2n

u2i+1u2j+1x
2n

= x
(
U2
o (x) + U2

e (x)
)
,

as claimed.

The following theorem shows that v2n can be expressed in terms of u2n and u2n−1.
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Theorem 3.5 For n ≥ 0, we have

v2n = u2n + u2n−1, (3.6)

which implies that

V (x) = Ue(x) + xUo(x). (3.7)

Proof. Clearly, (3.6) holds for n = 0 under the assumptions that u−1 = 0 and
u0 = v0 = 1. So we assume that n ≥ 1, and assume that π = π1π2 · · · π2n ∈
W[1222···(n−1)2n(n+1)](132). There are two cases. If n + 1 precedes n in π, then we
have π1 = n + 1. Otherwise, π1(n + 1)n forms a 132-pattern in π, a contradiction.
Using the fact that π1 = n + 1, it is clear that π ∈ W[1222···(n−1)2n(n+1)](132) if and
only if π2π3 · · · π2n ∈ W[1222···(n−1)2n](132). Notice that W[1222···(n−1)2n](132) is counted
by u2n−1.

If n precedes n+1 in π, then there does not exist any 132-pattern of π that contains
both n and n+ 1. In this case, we may treat n+ 1 as n. Such permutations form the
set W[1222···(n−1)2n2](132), which is counted by u2n. Combining the above two cases, we
obtain (3.6), which yields (3.7).

To compute the generating functions Ue(x), Uo(x) and V (x), we still need one more
relation, which is given below.

Theorem 3.6 For n ≥ 1, we have

u2n = 2
∑

2i+j=2n−1

u2iuj +
∑

2i+1+j=2n−2

u2i+1uj − u2n−1, (3.8)

which implies that

Ue(x) = 1 + 2xUe(x)Uo(x)− x2U2
e (x). (3.9)

Proof. Assume that π ∈ W[1222···n2](132). Write π in the form σnτ such that n appears
in σ. Since π is 132-avoiding, both σ and τ are 132-avoiding. Moreover, for any element
r in σ and any element s in τ , we have r ≥ s.

Let k be the maximum number in τ . There are two cases. If |τ | is even, us-
ing the same argument as in Theorem 3.4, we deduce that τ ∈ W[1222···k2](132) and
σ ∈ W[(k+1)2···(n−1)2n](132). In this case, W[1222···(k−1)2k2](132) is counted by u2k and
W[(k+1)2···(n−1)2n](132) is counted by u2n−1−2k.

If |τ | is odd, it can be seen that τ is in W[1222···(k−1)2k](132), which is counted by
u2k−1, and σ is in W[k(k+1)2···(n−1)2n](132). By Lemma 3.3, we find that

|W[k(k+1)2···(n−1)2n](132)| = |W[k2···(n−2)2(n−1)n](132)|,
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which is counted by v2n−2k. Observing that σ is not empty, we have 2n− 2k > 0.

Combining the above two cases, we get

u2n =
∑

2i+j=2n−1

u2iuj +
∑

2i+1+j=2n−1

u2i+1vj − u2n−1.

In view of relation (3.6), we obtain

u2n =
∑

2i+j=2n−1

u2iuj +
∑

2i+1+j=2n−1

u2i+1uj +
∑

2i+1+j=2n−1

u2i+1uj−1 − u2n−1

= 2
∑

2i+j=2n−1

u2iuj +
∑

2i+1+j=2n−2

u2i+1uj − u2n−1.

It remains to prove relation (3.9). Using (3.8), we have

Ue(x) = 1 +
∑
n≥1

u2nx
2n

= 1 +
∑
n≥1

(
2

∑
2i+j=2n−1

u2iuj +
∑

2i+1+j=2n−2

u2i+1uj − u2n−1

)
x2n

= 1 + 2
∑
n≥1

∑
2i+j=2n−1

u2iujx
2n +

∑
n≥1

∑
2i+1+j=2n−2

u2i+1ujx
2n −

∑
n≥1

u2n−1x
2n

= 1 + 2xUe(x)Uo(x) + x2U2
o (x)− xUo(x). (3.10)

Substituting (3.5) into (3.10), we obtain

Ue(x) = 1 + 2xUe(x)Uo(x) + x2U2
o (x)− x2

(
U2
o (x) + U2

e (x)
)

= 1 + 2xUe(x)Uo(x)− x2U2
e (x),

as claimed.

We are now ready to complete the proof of Theorem 3.1.

Proof of Theorem 3.1. Note that Q(x) = Ue(x). By (3.9), we get

Uo(x) =
x2U2

e (x) + Ue(x)− 1

2xUe(x)
. (3.11)

Plugging (3.11) into (3.5) yields the following equation

(x4 + 4x2)U4
e (x)− (2x2 + 1)U2

e (x) + 1 = 0. (3.12)
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Given the initial values of u2n, we are led the solution of Ue(x) as given by (3.1).

To conclude, we note that the generating functions Uo(x) and V (x) are given as
follows:

Uo(x) =
1

2x
− 1 +

√
1− 12x2

4x
Ue(x),

V (x) =
1

2
+

3−
√

1− 12x2

4
Ue(x).
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