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Abstract. The Dirichlet series Lm(s) are of fundamental importance in number theory.
Shanks defined the generalized Euler and class numbers in connection with the Dirichlet
series, denoted by {sm,n}n≥0. We obtain a formula for the exponential generating function
sm(x) of sm,n, where m is an arbitrary positive integer. In particular, for m > 1, say, m = bu2,
where b is square-free and u > 1, we show that sm(x) can be expressed as a linear combination
of the four functions w(b, t) sec(btx)(± cos((b − p)tx) ± sin(ptx)), where p is a nonnegative
integer not exceeding b, t|u2 and w(b, t) = Kbt/u with Kb being a constant depending on b.
Moreover, the Dirichlet series Lm(s) can be easily computed from the generating function
formula for sm(x). Finally, we show that the main ingredient in the formula for sm,n has a
combinatorial interpretation in terms of the Λ-alternating augmented m-signed permutations
defined by Ehrenborg and Readdy. More precisely, when m is square-free, this answers a
question posed by Shanks concerning a combinatorial interpretation of the numbers sm,n.
When m is not square-free and m = bu2, the numbers K−1

b sm,n can be written as a linear
combination of the number of Λ-alternating augmented bt-signed permutations with integer
coefficients, where t|u2.
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1 Introduction

The Dirichlet series

Lm(s) =
∑
l>0

odd l

(
−m
l

)
1

ls
, (1.1)

where (−m/l) is the Jacobi symbol, originate in the distribution of primes into arithmetic
progressions, the class number of binary quadratic forms, as well as the distribution of the
Legendre and Jacobi symbols. They play a crucial role in the computation of certain number-
theoretic constants, see [3, 6, 12, 14]. Several approaches have been developed for the com-
putation of Lm(s), see, for example, Shanks [15, 16, 18].

The generalized Euler and class numbers were introduced by Shanks for the computation
of the Dirichlet series Lm(s) [15, 17]. These numbers are also related to derivative polynomials
and Euler polynomials, see Hoffman [7] and Shanks [17].

In this paper, we obtain the generating functions for the generalized Euler and class
numbers. Let us recall the definition of the generalized Euler and class numbers sm,n (m ≥
1, n ≥ 0), introduced by Shanks,

sm,n =

{
cm,n

2
if n is even,

dm,n+1
2

if n is odd.

where cm,n and dm,n are given by

cm,n = (2n)!Lm(2n+ 1)(Km

√
m)−1

( π

2m

)−2n−1
, (1.2)

dm,n = (2n− 1)!L−m(2n)(Km

√
m)−1

( π

2m

)−2n
, (1.3)

in which

Km =

{
1
2 if m = 1,

1 otherwise.
(1.4)

Set

cm(x) =
∑
n≥0

cm,n
x2n

(2n)!
,

dm(x) =
∑
n≥1

dm,n
x2n−1

(2n− 1)!
,

sm(x) =
∑
n≥0

sm,n
xn

n!
.
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Clearly,
sm(x) = cm(x) + dm(x).

By the definitions (1.2) and (1.3), we have∑
n≥0

Lm(2n+ 1)x2n =
Kmπ

√
m

2m
cm

( π

2m
x
)
,

∑
n≥1

L−m(2n)x2n−1 =
Kmπ

√
m

2m
dm

( π

2m
x
)
.

Therefore, if we set

L̂m(s) =

{
L−m(s+ 1) if s is odd;

Lm(s+ 1) if s is even,

then ∑
s≥0

L̂m(s)xs =
Kmπ

√
m

2m
sm

( π

2m
x
)
. (1.5)

It follows from (1.5) that L̂m(s) is determined by sm (x). In other words, the generating
function sm(x) leads to a quick way to compute L̂m(s).

Consider cm,n and dm,n as entries of the infinite matrices C and D, respectively. Then
the first column of C forms the sequence of class numbers in connection with primitive binary
quadratic forms, and the first row of C forms the sequence of secant numbers, corresponding
to up-down permutations, also called alternating permutations, of even length. Meanwhile,
the first row of D forms the sequence of tangent numbers corresponding to up-down permu-
tations of odd length. Recall that both secant numbers and tangent numbers are called Euler
numbers. This is why the numbers sm,n are called generalized Euler and class numbers.

Shanks [17] found recurrence relations for cm,n and dm,n with respect to the index n, from
which it follows that cm,n and dm,n are integers. For example, we have

n∑
i=0

(−4)i
(

2n

2i

)
c2,n−i = (−1)n

and
n−1∑
i=0

(−4)i
(

2n− 1

2i

)
d2,n−i = (−1)n−1.

In fact, due to the well-known Euler product of the Dirichlet series Lm(s) (see [8, 11]), it can
be easily shown that cm,n and dm,n are positive.

Shanks [17] raised the following question: Whether all of the generalized Euler and class
numbers may have some combinatorial interpretation? The combinatorial interpretations of
sm,n for m = 1, 2, 3, 4 have been found. Let (sm,n)n≥0 denote the conjoined sequence

(cm,0, dm,1, cm,1, dm,2, cm,2, dm,3, . . .).
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For m = 1, the sequence (1, 1, 1, 2, 5, 16, . . .) is listed as A000111 in Sloane [19], which is
called the sequence of Euler numbers, enumerating the number of alternating permutations
on [n] = {1, 2, . . . , n}.

For m = 2, the sequence (1, 1, 3, 11, 57, 361, . . .) is numbered A001586 in [19], which is also
called the sequence of Springer numbers which arise in the work of Springer on the theory of
Weyl groups.

For m = 3, the sequence (1, 2, 8, 46, 352, 3362, . . .) is listed as A007289 in [19], and we
call it the sequence of Ehrenborg and Readdy numbers. The combinatorial interpretation of
this sequence in terms of alternating 3-signed permutations has been given by Ehrenborg and
Readdy [4].

For m = 4, a combinatorial interpretation of the sequence (1, 4, 16, 128, 1280, 16384, . . .)
has been given implicitly by Ehrenborg and Readdy [5] in terms of non-augmented André
R-signed permutations on [n] with R = (4, 4, . . . , 4).

For m ≥ 5, we shall give formulas for the generating function for sm(x). For the case
when m is square-free, we shall give a combinatorial interpretation for sm,n. In the general
case, we see that the number sm,n or 2sm,n is a linear combination with integer coefficients
of some numbers with a combinatorial interpretation.

For m = 1, 2, 3, 4, it is known that

s1(x) = secx+ tanx,

s2(x) =
cosx+ sinx

cos 2x
,

s3(x) =
sin 2x+ cosx

cos 3x
,

s4(x) = sec 4x+ tan 4x.

From our formulas, we get the following expressions for m = 5, 6, 7,

s5(x) =
cos 4x+ sinx

cos 5x
+

cos 2x+ sin 3x

cos 5x
,

s6(x) =
cos 5x+ sinx

cos 6x
+

cosx+ sin 5x

cos 6x
,

s7(x) =
cos 3x+ sin 4x

cos 7x
+

cosx+ sin 6x

cos 7x
− cos 5x+ sin 2x

cos 7x
.

This paper is organized as follows. In Section 2, we compute the generating function
sm(x) when m is square-free, while in Section 3 we consider the case when m is not square-
free. Section 4 is devoted to the combinatorial interpretation of the numbers sm,n in terms
of m-signed permutations as introduced by Ehrenborg and Readdy when m is square-free.
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2 Computation for sm(x) when m is square-free

In this section, we compute the generating function sm(x) when m > 1 and m is square-free.
For 0 ≤ p ≤ m, we adopt the following notation introduced in [4],

Λm,p(x) :=
cos((m− p)x) + sin(px)

cos(mx)
. (2.6)

When m is square-free, we shall not encounter the case that m is a multiple of 4. We
shall have three formulas for sm(x) depending on the residue of m modulo 4.

Theorem 2.1 Assume that m is square-free and m = 4t+ 3. Then

sm(x) =

t∑
k=1

(
k

m

)
Λm,4k(x) +

2t+1∑
k=t+1

(
k

m

)
Λm,2m−4k(x). (2.7)

Theorem 2.2 Assume that m is square-free and m = 4t+ 1. Then

sm(x) =
t∑

k=1

(
k

m

)
Λm,m−4k(x)−

2t∑
k=t+1

(
k

m

)
Λm,4k−m(x). (2.8)

Theorem 2.3 Assume that m is square-free and m = 4t+ 2. Then

sm(x) =
4t+1∑
k=1

odd k

(
−m
k

)
Λm,k(x). (2.9)

To prove the above theorems, let us first recall the following formula of Lm(2n + 1)
obtained by Shanks [15, 17].

Lemma 2.4 Suppose that m > 1 and m is square-free. Then Lm(2n + 1) can be expressed
as a linear combination of the Fourier series S2n+1(x). More precisely,

Lm(2n+ 1) =
2√
m

∑
k

εkS2n+1(yk),

where the Jacobi symbols εk and rational numbers yk are uniquely determined by m, and
S2n+1(x) is defined by

S2n+1(x) =

∞∑
k=0

sin 2π(2k + 1)x

(2k + 1)2n+1
.

Furthermore, we have

cm(x) =
1

cos(mx)

∑
k

εk cos(mx(1− 4yk)).
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In fact, Shanks has given an explicit procedure to determine the constants εk and yk. To
compute εk and yk, we use the definition (1.1) of the series Lm(s) and express the Jacobi
symbol

(−m
l

)
as a linear combination of sines according to the following expansion, see [9].

Proposition 2.5 Assume that l is odd and m satisfies the following two conditions: m ≡
1 (mod 4) or m ≡ 8 or 12 (mod 16) and p2 - m for any odd prime p. Then we have

(m
l

)
=

1√
m

|m|∑
r=1

(m
r

)
e2πilr/|m|. (2.10)

In particular, when m ≡ 3 (mod 4), we have −m ≡ 1 (mod 4) and we can use the above
expansion for

(−m
l

)
. Similarly, when m ≡ 1 (mod 4), we see that −4m ≡ 12 (mod 16) so

that we can compute
(−4m

l

)
by using the above formula. Finally, when m ≡ 2 (mod 4), we

find −4m ≡ 8 (mod 16) so that we can compute
(−4m

l

)
. Note that when l is odd, we have(

−4m

l

)
=

(
−m
l

)
.

Thus, the Jacobi symbol
(−m

l

)
can be determined by the above procedure for m > 1.

On the other hand, Shanks [15, 17] provided the following formula for L−m(2n).

Lemma 2.6 Suppose that m > 1 and m is square-free. Then L−m(2n) can be expressed as
a linear combination of the Fourier series C2n(x). To be more specific,

L−m(2n) =
2√
m

∑
k

ε′kC2n(y′k),

where the Jacobi symbols ε′k and rational numbers y′k are uniquely determined by m, and
C2n(x) is defined by

C2n(x) =
∞∑
k=0

cos 2π(2k + 1)x

(2k + 1)2n
.

Moreover,

dm(x) =
1

cos(mx)

∑
k

ε′k sin(mx(1− 4y′k)).

Similarly, Shanks has shown how to compute the constants ε′k and y′k. In order to compute
ε′k and y′k, recall that

L−m(s) =
∑
l>0

odd l

(m
l

) 1

ls
,

where the Jacobi symbol
(
m
l

)
can be expressed as a linear combination of cosines, resorting

to Proposition 2.5.
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For the case m ≡ 3 (mod 4), we find 4m ≡ 12 (mod 16) so that we can use the above
expansion for

(
4m
l

)
. When m ≡ 1 (mod 4), we can also compute

(
m
l

)
by using the above

expansion. Finally, when m ≡ 2 (mod 4), we see that 4m ≡ 8 (mod 16) and
(

4m
l

)
can be

determined in the same manner. Note that when l is odd, the following relation holds(
4m

l

)
=
(m
l

)
.

Thus, the Jacobi symbol
(
m
l

)
can be determined for m > 1.

Keep in mind that m is assumed to be square-free. Set

ĉm(x) = cos(mx)cm(x), d̂m(x) = cos(mx)dm(x), ŝm(x) = cos(mx)sm(x).

Proof of Theorem 2.1. Since m ≡ 3 (mod 4), by using the expansion (2.10) for
(−m

l

)
and(

4m
l

)
, we have

εk =

(
k

m

)
, yk =

k

m
, ε′k =

(m
k

)
, y′k =

k

4m
,

which imply that

Lm(2n+ 1) =
2√
m

(m−1)/2∑
k=1

(
k

m

)
S2n+1

(
k

m

)
,

L−m(2n) =
2√
m

∑
odd k<m

(m
k

)
C2n

(
k

4m

)
.

Therefore, by Lemmas 2.4 and 2.6, we obtain

ŝm(x) = ĉm(x) + d̂m(x) =

(m−1)/2∑
k=1

(
k

m

)
cos(m− 4k)x+

∑
odd k<m

(m
k

)
sin(m− k)x.

Suppose that m = 4t+ 3. It follows that

ĉm(x) =
t∑

k=1

(
k

m

)
cos(m− 4k)x+

2t+1∑
k=t+1

(
k

m

)
cos(m− 4k)x

=

t∑
k=1

(
k

m

)
cos(m− 4k)x+

2t+1∑
k=t+1

(
k

m

)
cos(4k −m)x,

d̂m(x) =

4t+1∑
k=1

odd k

(m
k

)
sin(m− k)x.

Thus we obtain

ŝm(x) =
t∑

k=1

((
k

m

)
cos(m− 4k)x+

(
m

m− 4k

)
sin(4k)x

)

+

2t+1∑
k=t+1

((
k

m

)
cos(4k −m)x+

(
m

4k −m

)
sin(2m− 4k)x

)
.

7



It remains to verify that (
k

m

)
=

(
m

m− 4k

)
(2.11)

for 1 ≤ k ≤ t and (
k

m

)
=

(
m

4k −m

)
(2.12)

for t+ 1 ≤ k ≤ 2t+ 1.

As for (2.11), since both m and m − 4k are odd positive numbers, if they are coprime,
then by the law of quadratic reciprocity, we find(

m

m− 4k

)
= −

(
m− 4k

m

)
= −

(
−4k

m

)
= −

(
−4

m

)(
k

m

)
= −

(
−1

m

)(
4

m

)(
k

m

)
=

(
2

m

)2( k
m

)
=

(
k

m

)
.

Otherwise, suppose that the greatest common divisor of m and m− 4k is greater than 1, i.e.,
(m,m− 4k) > 1. From the definition of the Jacobi symbol, it is clear that(

m

m− 4k

)
= 0.

We wish to show that (
k

m

)
= 0.

Since (m,m− 4k)|m, (m,m− 4k)|(m− 4k) and m− (m− 4k) = 4k, we deduce that

(m,m− 4k)|4k. (2.13)

But the fact that m is odd implies that ((m,m−4k), 4) = 1. Thus from (2.13) it follows that
(m,m− 4k)|k. So we conclude that (m,m− 4k)|(m, k) and (m, k) > 1, which yields(

k

m

)
=

(
m

m− 4k

)
= 0.

Similarly, (2.12) can be checked via the following steps if 4k −m and m are coprime,(
m

4k −m

)
=

(
4k −m
m

)
=

(
−(m− 4k)

m

)
=

(
−1

m

)(
m− 4k

m

)
= −

(
m− 4k

m

)
= −

(
−4k

m

)
=

(
k

m

)
.

For the case (m, 4k −m) > 1, by the definition of the Jacobi symbol, it is evident that(
m

4k −m

)
= 0.
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In this case, we claim that (
k

m

)
= 0.

Since (m, 4k −m)|m, (m, 4k −m)|(4k −m) and m+ (4k −m) = 4k, we deduce that

(m, 4k −m)|4k. (2.14)

Because m is odd, we see that ((m, 4k − m), 4) = 1. Thus from (2.14) it follows that
(m, 4k −m)|k. Therefore, we obtain that (m, 4k −m)|(m, k) and (m, k) > 1, which implies(

k

m

)
=

(
m

4k −m

)
= 0.

So we find that

sm(x) =

t∑
k=1

(
k

m

)
cos (m− 4k)x+ sin (4k)x

cosmx

+
2t+1∑
k=t+1

(
k

m

)
cos(4k −m)x+ sin(2m− 4k)x

cosmx
.

This completes the proof.

Proof of Theorem 2.2. Under the condition m ≡ 1 ( mod 4), by applying the expansion (2.10)
to
(−4m

l

)
and

(
m
l

)
, we get

εk =

(
−m
k

)
, yk =

k

4m
, ε′k =

(
k

m

)
, y′k =

k

m
.

It follows that

Lm(2n+ 1) =
2√
m

∑
odd k<m

(
−m
k

)
S2n+1

(
k

4m

)
,

L−m(2n) =
2√
m

(m−1)/2∑
k=1

(
k

m

)
C2n

(
k

m

)
.

In view of Lemmas 2.4 and 2.6, we find

ŝm(x) = ĉm(x) + d̂m(x) =
∑

odd k<m

(
−m
k

)
cos(m− k)x+

(m−1)/2∑
k=1

(
k

m

)
sin(m− 4k)x.
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Writing m = 4t+ 1, we obtain

d̂m(x) =

t∑
k=1

(
k

m

)
sin(m− 4k)x+

2t∑
k=t+1

(
k

m

)
sin(m− 4k)x

=

t∑
k=1

(
k

m

)
sin(m− 4k)x−

2t∑
k=t+1

(
k

m

)
sin(4k −m)x,

ĉm(x) =

4t−1∑
k=1

odd k

(
−m
k

)
cos(m− k)x.

Consequently,

ŝm(x) =

t∑
k=1

((
k

m

)
sin(m− 4k)x+

(
− m

m− 4k

)
cos(4k)x

)

+
2t∑

k=t+1

(
−
(
k

m

)
sin(4k −m)x+

(
− m

4k −m

)
cos(2m− 4k)x

)
.

Finally, we need to show that (
k

m

)
=

(
− m

m− 4k

)
(2.15)

for 1 ≤ k ≤ t and

−
(
k

m

)
=

(
− m

4k −m

)
(2.16)

for t+ 1 ≤ k ≤ 2t.

To verify (2.15), we shall consider two cases. If (m,m−4k) = 1, since both m and m−4k
are odd, we may employ the law of quadratic reciprocity to deduce that(

− m

m− 4k

)
=

(
−1

m− 4k

)(
m

m− 4k

)
=

(
m

m− 4k

)
=

(
m− 4k

m

)
=

(
−4k

m

)
=

(
−4

m

)(
k

m

)
=

(
−1

m

)(
2

m

)2( k
m

)
=

(
k

m

)
.

For the case (m,m− 4k) > 1, by definition,(
− m

m− 4k

)
= 0.

We wish to show that (
k

m

)
= 0.

Since (m,m− 4k)|m, (m,m− 4k)|(m− 4k) and m− (m− 4k) = 4k, we get

(m,m− 4k)|4k. (2.17)
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However, the fact that m is odd implies that ((m,m− 4k), 4) = 1. Thus, from (2.17) we see
that (m,m− 4k)|k. It follows that (m,m− 4k)|(m, k) and (m, k) > 1. Hence(

k

m

)
=

(
− m

m− 4k

)
= 0.

To prove (2.16), we also consider two cases. If m and 4k −m are coprime, then we have

−
(
− m

4k −m

)
= −

(
−1

4k −m

)(
m

4k −m

)
=

(
m

4k −m

)
=

(
4k −m
m

)
=

(
−(m− 4k)

m

)
=

(
−1

m

)(
m− 4k

m

)
=

(
−4k

m

)
=

(
k

m

)
.

If (m, 4k −m) > 1, then we get

−
(
− m

4k −m

)
= 0.

We shall show that (
k

m

)
= 0.

Since (m, 4k −m)|m, (m, 4k −m)|(4k −m) and m+ (4k −m) = 4k, we find

(m, 4k −m)|4k. (2.18)

But m is odd, we see that ((m, 4k −m), 4) = 1. From (2.18) it follows that (m, 4k −m)|k.
This implies that (m, 4k −m)|(m, k) and (m, k) > 1. Consequently,(

k

m

)
= −

(
− m

4k −m

)
= 0.

Thus we obtain

sm(x) =
t∑

k=1

(
k

m

)
cos(4k)x+ sin(m− 4k)x

cosmx

−
2t∑

k=t+1

(
k

m

)
cos(2m− 4k)x+ sin(4k −m)x

cosmx
.

This completes the proof.

Proof of Theorem 2.3. Since m ≡ 2 (mod 4), by using the expansion (2.10) for
(−4m

l

)
and(

4m
l

)
, we obtain

εk =

(
−m
k

)
, yk =

k

4m
, ε′k =

(m
k

)
, y′k =

k

4m
.
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Hence

Lm(2n+ 1) =
2√
m

∑
odd k<m

(
−m
k

)
S2n+1

(
k

4m

)
,

L−m(2n) =
2√
m

∑
odd k<m

(m
k

)
C2n

(
k

4m

)
.

By Lemmas 2.4 and 2.6, we see that

ŝm(x) = ĉm(x) + d̂m(x) =
∑

odd k<m

(
−m
k

)
cos(m− k)x+

∑
odd k<m

(m
k

)
sin(m− k)x.

Writing m = 4t+ 2, since (
4t+ 2

2t+ 1

)
= 0,

we obtain

ŝm(x) =
4t+1∑
k=1

odd k

((
−m
k

)
cos(m− k)x+

(
m

m− k

)
sin(k)x

)
.

Finally, it follows from −k ≡ m− k (mod m) that(
−m
k

)
=

(
m

m− k

)
(2.19)

for 1 ≤ k ≤ 4t+ 1. Hence we conclude that

sm(x) =

4t+1∑
k=1

odd k

(
−m
k

)
cos(m− k)x+ sin(k)x

cosmx
.

This completes the proof.

For m = 5, 6, 7, the generating functions sm(x) have been given in the Introduction.

3 Computation for sm(x) when m is not square-free

In this section, we obtain an expression for sm(x) for the case when m is not square-free.
Assume that m can be divided by a square u2 and u > 1. Recall that the constant Kb is
given by (1.4).

Theorem 3.1 Suppose that m = bu2, where b is square-free and u > 1. Then we can express
sm(x) as a linear combination of the four functions

w(b, t) sec(btx)(± cos((b− p)tx)± sin(ptx)),

where p is a nonnegative integer not exceeding b, t|u2 and w(b, t) = Kbt/u.
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The idea of the proof is to establish two recursive relations (3.21) and (3.22) between sm,n
and sb,n. Then we express sm(x) as a linear combination of the functions cb(tx) and db(tx)
by considering the two cases according to whether there exist odd prime factors ui of u with
residues 3 modulo 4. Since b is square-free, cb(tx) and db(tx) can be evaluated by using the
formulas in the previous section.

Proof. Let us start with the following relation given by Shanks [15]

Lm(s) = Lb(s)
∏
ui|u

(
1−

(
−b
ui

)
1

usi

)
, (3.20)

where the product ranges over odd primes ui (if any) that divide u. To be precise, in case
there are no odd prime factors, the empty product is defined to be 1. From the definitions
(1.2) and (1.3) it follows that

cm,n = Kbu(u2)2n
∏
i

(
u2n+1
i −

(
−b
ui

))(∏
i

1

ui

)2n+1

cb,n, (3.21)

dm,n = Kbu(u2)2n−1
∏
i

(
u2n
i −

(
b

ui

))(∏
i

1

ui

)2n

db,n. (3.22)

For the purpose of computing sm(x) for the case when m is not square-free, we need to
consider the two cases according to whether there exist ui ≡ 3 (mod 4) among the k odd
factors u1, u2, . . . , uk of u.

Case 1: ui ≡ 1 (mod 4) for 1 ≤ i ≤ k. In this case, we see that(
−b
ui

)
=

(
b

ui

)
.

Suppose that among the factors u1, u2, . . . , uk there are k1 primes u1, u2, . . . , uk1 satisfying(
b
ui

)
= 1 for 1 ≤ i ≤ k1, k2 primes uk1+1, uk1+2, . . . , uk1+k2 satisfying

(
b

uk1+j

)
= −1 for

1 ≤ j ≤ k2, and k3 primes uk1+k2+1, uk1+k2+2, . . . , uk1+k2+k3 satisfying
(

b
uk1+k2+l

)
= 0 for

1 ≤ l ≤ k3, where k1 + k2 + k3 = k. From (3.21) it is clear that

cm,n = Kbu(u2)2n

∏k1
i=1(u2n+1

i − 1)×
∏k2
j=1(u2n+1

k1+j + 1)∏k1+k2
i=1 u2n+1

i

cb,n. (3.23)

Let

fc =

∏k1
i=1(u2n+1

i − 1)×
∏k2
j=1(u2n+1

k1+j + 1)∏k1+k2
i=1 u2n+1

i

.

In this notation, (3.23) can be rewritten as

cm,n = Kbu(u2)2nfccb,n,

13



which implies that

cm(x) = Kbu
∑
n≥0

fccb,n
(u2x)2n

(2n)!
. (3.24)

Since
k1∏
i=1

(u2n+1
i − 1) =

k1∏
i=1

u2n+1
i −

k1∑
i=1

(∏
u1 · · ·ui−1ui+1 · · ·uk1

)2n+1
+ · · ·+ (−1)k1

and
k2∏
j=1

(u2n+1
k1+j + 1) =

k2∏
j=1

u2n+1
k1+j +

k2∑
j=1

(∏
uk1+1 . . . uk1+j−1uk1+j+1 · · ·uk1+k2

)2n+1
+ · · ·+ 1,

we can expand fc as follows

fc =1 +

k2∑
j=1

1

u2n+1
k1+j

+ · · ·+ 1∏k2
j=1 u

2n+1
k1+j

−
k1∑
i=1

1

u2n+1
i

−
k1∑
i=1

k2∑
j=1

1

u2n+1
i u2n+1

k1+j

+ · · ·

−
k1∑
i=1

1

u2n+1
i

∏k2
j=1 u

2n+1
k1+j

+ · · ·+ (−1)k1∏k1+k2
i=1 u2n+1

i

. (3.25)

Plugging (3.25) into (3.24), we find that cm(x) is a linear combination of the functions
cb(tx), where t|u2 and the coefficient of cb(tx) equals Kbt/u.

Similarly, we have

dm,n = Kbu(u2)2n−1

∏k1
i=1(u2n

i − 1)×
∏k2
j=1(u2n

k1+j + 1)∏k1+k2
i=1 u2n

i

db,n. (3.26)

Let

fd =

∏k1
i=1(u2n

i − 1)×
∏k2
j=1(u2n

k1+j + 1)∏k1+k2
i=1 u2n

i

,

then (3.26) can be rewritten as

dm,n = Kbu(u2)2n−1fddb,n,

which leads to the following relation

dm(x) = Kbu
∑
n≥1

fddb,n
(u2x)2n−1

(2n− 1)!
. (3.27)

Again we may expand fd as follows

fd =1 +

k2∑
j=1

1

u2n
k1+j

+ · · ·+ 1∏k2
j=1 u

2n
k1+j

−
k1∑
i=1

1

u2n
i

−
k1∑
i=1

k2∑
j=1

1

u2n
i u

2n
k1+j

+ · · ·

−
k1∑
i=1

1

u2n
i

∏k2
j=1 u

2n
k1+j

+ · · ·+ (−1)k1∏k1+k2
i=1 u2n

i

. (3.28)
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Substituting (3.28) into (3.27), we find that dm(x) is a linear combination of the functions
db(tx), where t|u2 the coefficient of db(tx) equals Kbt/u. Furthermore, we see that cm(x) and
dm(x) have the same coefficients for the linear combinations. In other words, the relation for
cm(x) and cb(tx) is still valid after changing cm(x) and cb(tx) to dm(x) and db(tx), respectively.
Therefore, in this case, sm(x) can be expressed as a sum of the functions w(b, t)(cb(tx) +
db(tx)), where t|u2 and w(b, t) = Kbt/u.

Case 2: Among the k primes u1, u2, . . . , uk, there exists q primes ui1 , ui2 , . . . , uiq with
residue 3 modulo 4. To compute sm(x), we first consider the case when q = 1, and then
argue that the case q > 1 can be dealt with in the same way.

Since q = 1, we assume that the first k − 1 odd primes u1, u2, . . . , uk−1 satisfy ui ≡
1 (mod 4) for 1 ≤ i ≤ k− 1, and suppose that the last prime uk satisfies uk ≡ 3 (mod 4), or(

−b
uk

)
= −

(
b

uk

)
.

We now define the indices k1, k2 and k3 as in Case 1 except that k1 + k2 + k3 = k − 1
since there are k− 1 primes with residue 1 modulo 4. This leads us to consider two subcases

according to whether
(
−b
uk

)
equals 0. Keep in mind that we have q = 1 in these two subcases.

On the one hand, in order to use the two recursive relations (3.21) and (3.22) between

sm,n and sb,n, we may assume that
(
−b
uk

)
= 0. Therefore, the term uk on the denominator

and the same term on the numerator cancel each other in (3.21). This argument also applies
to the relation (3.22). In other words, there is no need to consider the occurrence of the term
u2n+1
k in (3.21) and the terms u2n

k in (3.22). In this sense, it remains to consider the other k−1
primes u1, u2, . . . , uk−1 such that ui ≡ 1 (mod 4) for 1 ≤ i ≤ k−1. By the argument in Case
1, we see again that sm(x) can be expressed as a sum of the terms w(b, t)(cb(tx) + db(tx)),
where t|u2 and w(b, t) = Kbt/u.

On the other hand, we should consider the case when
(
−b
uk

)
= 1 or

(
−b
uk

)
= −1. Since the

proofs for these two cases are similar, we only give the proof for the case
(
−b
uk

)
= −1. From

(3.21) it follows that

cm,n =Kbu(u2)2n

∏k1
i=1(u2n+1

i − 1)
∏k2
j=1(u2n+1

k1+j + 1)∏k1+k2
i=1 u2n+1

i

×
u2n+1
k + 1

u2n+1
k

cb,n

=Kbu(u2)2n

(∏k1
i=1(u2n+1

i − 1)
∏k2
j=1(u2n+1

k1+j + 1)∏k1+k2
i=1 u2n+1

i

+

∏k1
i=1(u2n+1

i − 1)
∏k2
j=1(u2n+1

k1+j + 1)

u2n+1
k

∏k1+k2
i=1 u2n+1

i

)
cb,n.

Let

gb(x) = Kbu
∑
n≥0

(∏k1
i=1(u2n+1

i − 1)
∏k2
j=1(u2n+1

k1+j + 1)∏k1+k2
i=1 u2n+1

i

)
cb,n

(u2x)2n

(2n)!
,
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then we have

cm(x) = gb(x) +
1

uk
gb(x/uk). (3.29)

In fact, by the argument in Case 1, we see that gb(x) is a linear combination of the functions
cb(tx), where t|u2 and the coefficient of cb(tx) equals Kbt/u.

Similarly, by (3.22) we find

dm,n =Kbu(u2)2n−1

∏k1
i=1(u2n

i − 1)
∏k2
j=1(u2n

k1+j + 1)∏k1+k2
i=1 u2n

i

×
u2n
k − 1

u2n
k

db,n

=Kbu(u2)2n−1

(∏k1
i=1(u2n

i − 1)
∏k2
j=1(u2n

k1+j + 1)∏k1+k2
i=1 u2n

i

−
∏k1
i=1(u2n

i − 1)
∏k2
j=1(u2n

k1+j + 1)

u2n
k

∏k1+k2
i=1 u2n

i

)
db,n.

Let

hb(x) = Kbu
∑
n≥1

(∏k1
i=1(u2n

i − 1)
∏k2
j=1(u2n

k1+j + 1)∏k1+k2
i=1 u2n

i

)
db,n

(u2x)2n−1

(2n− 1)!
.

We get

dm(x) = hb(x)− 1

uk
hb(x/uk). (3.30)

Again, from the reasoning in Case 1 it follows that hb(x) is a linear combination of the func-
tions db(tx), where t|u2 and the coefficient of db(tx) equals Kbt/u. Combining the equations
(3.29) and (3.30) yields the following relation

sm(x) = gb(x) + hb(x) +
1

uk
(gb(x/uk)− hb(x/uk)).

Thus we obtain that sm(x) can also be expressed as a linear combination of the functions
w(b, t)(±cb(tx)± db(tx)), where t|u2 and w(b, t) = Kbt/u.

Finally, as mentioned before we shall show that the justification for the above two subcases
can be applied to the case for q > 1. Let us give an example for q = 2. Suppose that uk−1 and

uk are the last two primes such that uk−1 ≡ 3 (mod 4), uk ≡ 3 (mod 4), and
(
−b
uk−1

)
= −1,(

−b
uk

)
= −1. Using the functions gb(x) and hb(x) as given before, we can deduce the following

formula for sm(x),

sm(x) =gb(x) + hb(x) +
1

uk−1
(gb(x/uk−1)− hb(x/uk−1)) +

1

uk
(gb(x/uk)− hb(x/uk))

+
1

uk−1uk
(gb(x/uk−1uk) + hb(x/uk−1uk)).

Clearly, sm(x) can also be written as a linear combination of the functions w(b, t)(±cb(tx)±
db(tx)), where t|u2 and w(b, t) = Kbt/u. For the other conditions on uk−1 and uk, the
computation can be done in the same spirit.
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In summary, sm(x) can be expressed as a linear combination of the functions w(b, t)(±cb(tx)±
db(tx)), where t|u2 and w(b, t) = Kbt/u. Since b is square-free, cb(tx) and db(tx) can be writ-
ten as a linear combination of the functions sec(btx) cos((b − p)tx) and sec(btx) sin(ptx),
respectively, by using the formulas in the previous section. This completes the proof.

Here we give three examples corresponding to the above three cases. For Case 1, suppose
that m = 3(5× 13)2 = 3(65)2 = 3× 4225 = 12675. Then we have

s12675(x) = 65s3(4225x)− 5s3(325x) + 13s3(845x)− s3(65x),

where
s3(x) = sec(3x)(sin 2x+ cosx).

For the first subcase of Case 2, suppose that m = 6(5 × 3)2 = 3(15)2 = 6 × 225 = 1350.
Then we get

s1350(x) = 15s6(225x)− 3s6(45x),

where
s6(x) = sec(6x)(cos 5x+ sinx) + sec(6x)(cosx+ sin 5x).

For the second subcase of Case 2, assume that m = 225 = (5× 3)2. We find

2s225(x) =15(c1(225x) + d1(225x))− 3(c1(45x) + d1(45x)) + 5(c1(75x)− d1(75x))

− (c1(15x)− d1(15x)),

where
c1(x) = secx, d1(x) = tanx.

4 A combinatorial interpretation for sm,n

In this section, we aim to give a combinatorial interpretation of sm,n when m is square-
free based on its generating function formula sm(x). Let us recall the known combinatorial
interpretations of sm,n when m = 1, 2, 3, 4.

For m = 1, (s1,n)n≥0 is called the sequence of Euler numbers. Let En be the n-th Euler
number, that is, the number of up-down permutations on [n] = {1, 2, . . . , n}, which are also
called snakes of type An−1 by Arnol’d [2]. The following generating function is due to André
[1]: ∑

n≥0

En
xn

n!
= secx+ tanx.

Note that Springer also gave an explanation of the Euler numbers in terms of the irreducible
root system An−1 and derived the generating function of André in this context.
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For m = 2, the sequence (s2,n)n≥0 turns out to be the sequence of Springer numbers of
the irreducible root system Bn [20]. Purtill [13] has found an interpretation of this sequence.
Let Pn be the n-th entry of this sequence, whereas Purtill used the notation E±n . He has
shown that Pn equals the number of André signed permutations on [n]. On the other hand, it
has been shown by Arnol’d [2] that Sn also counts the number of snakes of type Bn. Hoffman
[7] has derived the generating function of the number of snakes of type Bn by giving a direct
combinatorial proof.

For m = 3, the sequence (s3,n)n≥0 has been studied by Ehrenborg and Readdy [4].
Let Fn denote the n-th Ehrenborg and Readdy number, which was denoted by |ERn|, see
Hoffman [7]. It has been shown that Fn equals the number Λ-alternating augmented 3-signed
permutations on [n]. Meanwhile, Hoffman [7] presented another combinatorial interpretation
of the sequence in the case m = 3 in terms of ERn-snakes in the spirit of the snakes of type
An−1 and Bn.

For m = 4, the sequence (s4,n)n≥0 has also been studied by Ehrenborg and Readdy [5, P.
719]. In fact, they introduced the concept of non-augmented André R-signed permutations
on a finite set N with |N | = n, where R = (ri)i∈N is a vector indexed by N . They have
shown that the exponential generating function for the number of non-augmented André R-
signed permutations with the n-tuple R = (r, r, . . . , r) is sec(rx) + tan(rx). Therefore, for
the n-tuple R = (4, 4, . . . , 4), it follows that the number of non-augmented André R-signed
permutation is counted by s4,n.

We proceed to give a combinatorial interpretation for sm,n when m is square-free based on
the generating function sm(x). More precisely, in this case we shall show that sm(x) can be
expressed by the generating function Λm, p(x) for the numbers Λm, p, n defined by Ehrenborg
and Readdy [4]. Consequently, when m is square-free, the numbers sm,n can be written as a
linear combination of the numbers Λm, p, n with coefficients being 1 or −1. With the aid of
the combinatorial interpretation of the generating function due to Ehrenborg and Readdy,
we see that sm,n can be explained in terms of maximal chains in the m-cubical lattice.

When m is not square-free, write m = bu2. The numbers sm,n or 2sm,n can be written
as a linear combination of the numbers Λbt, pt, n with integer coefficients, where t|u2 and
0 ≤ p ≤ b. However, these integer coefficients are obtained from the generating function of
sm(x). It would be interesting to find a combinatorial explanation of these coefficients when
m is not square-free.

We now need some definitions. Ehrenborg and Readdy [4] defined a poset called the
Sheffer poset, which can be viewed as a generalization of the binomial poset introduced
by Stanley [21]. As an important example, they studied the r-cubical lattice, which is a
set of ordered r-tuples (A1, A2, . . . , Ar) of subsets from an infinite set I together with the
reverse inclusion order and with a minimum element 0̂ adjoined. Note that the r-cubical
lattice has been studied by Metropolis, Rota, Strehl and White [10]. Ehrenborg and Readdy
further generalized the concept of R-labelings to linear edge-labelings. By considering the
set of maximal chains in the interval [0̂, 1̂] on the Hasse diagram of the r-cubical lattice, they
derived a formula for the number of Λ-alternating augmented r-signed permutations.
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To describe the definition of Λ-alternating augmented r-signed permutations, Ehrenborg
and Readdy constructed a linear edge-labeling on the Hasse diagram of the r-cubical lattice.
To be more specific, for an edge corresponding to the cover relation A < B with A 6= 0̂, let
(i, j) denote its label where i equals the unique index such that Ai 6= Bi and j takes the
singleton element in Ai − Bi. Let G be the label of the edge corresponding to 0̂ < A, which
is called the special element by Ehrenborg and Readdy. Then an augmented r-signed per-
mutation is a list (G, (i1, j1), (i2, j2), . . . , (in, jn)), where i1, i2, . . . , in ∈ [r], and (j1, j2, . . . , jn)
forms a permutation on [n]. In other words, r-signed permutations are permutations on [n]
in which each element is assigned one of r signs.

To define the descent set of r-signed permutations, let Λ be the set of such labels of the
edges on the Hasse diagram of the r-cubical lattice. As is easily seen,

Λ = ([r]× [n]) ∪ {G}.

Let p be an integer such that 0 ≤ p ≤ r. For fixed positive integers r, n and p, we can define
a linear order on Λ which satisfies the following conditions

(i, j) <Λ G⇒ i ≤ r − p, (4.31)

and
(i, j) >Λ G⇒ i > r − p, (4.32)

where (i, j) is the label of the edge corresponding to the cover relation A < B such that A
covers 0̂, and G is the special element. For the remaining labels, we may arrange them in the
lexicographic order. The descent set of an augmented r-signed permutation (g0, g1, . . . , gn) is
defined as the set {k : gk−1 >Λ gk}, where g0 = G and gk = (ik, jk) for 1 ≤ k ≤ n. Therefore,
for an Λ-alternating augmented r-signed permutation, that is, permutation having descent
set {2, 4, 6, . . .}, it is necessary to have the condition (i1, j1) >Λ G, or i1 > r − p. In other
words, the labels above G in this ordering are those whose first coordinate may take p possible
values from the set {r − p+ 1, r − p+ 2, . . . , r}.

Recall that Λr, p, n denotes the number of Λ-alternating augmented r-signed permutations.
Since there is a one-to-one correspondence between the set of maximal chains in the r-cubical
lattice and the set of augmented r-signed permutations, Λr, p, n also equals the number of
maximal chains with descent set {2, 4, 6, . . .} in the r-cubical lattice for which the first non-
special edge has label (i1, j1) with r−p+1 ≤ i1 ≤ r. Here the first non-special edge is defined
as the edge corresponding to the cover relation A < B such that A covers 0̂. Based on this
observation, Ehrenborg and Readdy derived the following generating function for Λr, p, n

Λr, p(x) =
∑
n≥0

Λr, p, n
xn

n!
=

cos((r − p)x) + sin(px)

cos(rx)
. (4.33)

In view of the above formula (4.33) and the generating functions for the generalized
Euler and class numbers sm,n in the previous sections, for any square-free m we can give a
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combinatorial interpretation of sm,n in terms of the augmented m-signed permutations, or
equivalently, in terms of the maximal chains in the Hasse diagram of the m-cubical lattice.

When m is square-free, as is shown in Section 2, sm,n is a linear combination of the
numbers Λm, p, n with integer coefficients being 1 or −1. For example, when m = 7, since

s7(x) =
cos 3x+ sin 4x

cos 7x
+

cosx+ sin 6x

cos 7x
− cos 5x+ sin 2x

cos 7x
,

we obtain that
s7,n = Λ7, 6, n − Λ7, 2, n + Λ7, 4, n.

When m is not square-free, write m = bu2 and u > 1. By Theorem (3.1), K−1
b sm,n can

be written as a linear combination of the numbers Λbt, pt, n with integer coefficients. Recall
that K−1

1 = 2 and K−1
b = 1 for b 6= 1. For instance, we have

2s9(x) = 3(sec(9x) + tan(9x)) + (sec(3x)− tan(3x)),

which implies
2s9,n = 3Λ9, 9, n + (−1)nΛ3, 3, n.
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