G. Cardona, A. Mir and F. Rosselló,
The expected value under the Yule model of the squared path-difference distance, Appl. Math. Lett. 25 (2012) 2031-2036.

D.K. Du, Q.-H. Hou and H.-T.Jin,
Non-commutative elimination proves special number identities, Preprint.

H.-T. Jin and D.K. Du,
Abel's lemma and identities on harmonic numbers,
Integers, 15 (2015) Paper No. A22, 11 pp.

S.I. Kalmykov and D.B. Karp,
Log-convexity and log-concavity for series in gamma ratios and applications, J. Math. Anal. Appl. 406 (2013) 400-418.

H. Moll, Numbers and Functions, AMS, Providence, 2012.

C.P. Niculescu and M.M. Stanescu, A note on Abel's partial summation formula, Aequat. Math. 91(6) (2017) 1009-1024.

J. Wang and C. Wei, Derivative operator and summation formulae involving generalized harmonic numbers,
J. Math. Anal. Appl. 434 (2016) 315-341.

J. Wang and C. Wei, Four families of summation formulas involving generalized harmonic numbers,
Ramanujan J. 45 (2018) 73-94.

Y.P. Wang and X. Tong,
Several identities involving *q*-harmonic numbers by *q*-Chu-Vandermonde convolution formula,
Ars Combin. 122 (2015) 21-32.

C. Wei, Minton-Karlsson identities and summation formulae involving generalized harmonic numbers,
Integral Transforms Spec. Funct. 27 (2016) 592-598.

C. Wei, D.X. Gong and L.L. Liu, Summation formulas involving harmonic numbers with even or odd indexes,
arXiv:1806.09985.

C. Wei, D.X. Gong and Q. Wang, Chu–Vandermonde convolution and harmonic number identities,
Integral Transforms Spec. Funct. 24 (2013) 324-330.

C. Wei, D.X. Gong and Q.L. Yan, Telescoping method, derivative operators and harmonic number identities,
Integral Transforms Spec. Funct. 25 (2014) 203-214.

C. Wei and Q. Wang, A Saalschütz-type identity and summation formulae involving generalized harmonic numbers,
J. Math. Anal. Appl. 449(2) (2017) 1036-1052.

C. Wei and X.X. Wang, Summation formulas involving generalized harmonic numbers,
J. Difference Equ. Appl. 22(10) (2016) 1554-1567.

C. Wei and X.X. Wang, Whipple-type _{3}*F*_{2}-series
and summation formulae involving generalized harmonic numbers,
Int. J. Number Theory 14(9) (2018) 2385-2407.

C. Wei, Q.L. Yan and D.X. Gong, A family of summation formulas involving generalized harmonic numbers, arXiv:1203.2863.

C. Wei, Q.L. Yan and D.X. Gong, A family of summation formulae involving harmonic numbers,
Integral Transforms Spec. Funct. 26(9) (2015) 667-677.

C. Wei, Y.B. Yu and H.J. Zhang, Watson-type -series
and summation formulae involving generalized harmonic numbers, J. Difference Equ. Appl. 24(9) (2018) 1444-1472.

Q.L. Yan and Y.Q. Liu, Harmonic number identities involving telescoping method and derivative operator,
Integral Transforms Spec. Funct. 28(10) (2017) 703-709.