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Abstract. We present an approach to proving the 2-log-convexity of sequences satisfy-
ing three-term recurrence relations. We show that the Apéry numbers, the Cohen-Rhin
numbers, the Motzkin numbers, the Fine numbers, the Franel numbers of order 3 and
4 and the large Schröder numbers are all 2-log-convex. Numerical evidence suggests
that all these sequences are k-log-convex for any k ≥ 1 possibly except for a constant
number of terms at the beginning.

1 Introduction

In his proof of the irrationality of ζ(2) and ζ(3), Apéry [2] introduced the following
numbers An and Bn as given by

An =
n∑

k=0

(
n

k

)2(
n+ k

k

)2

, (1.1)

Bn =
n∑

k=0

(
n

k

)2(
n+ k

k

)
. (1.2)
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The numbers An and Bn are often called the Apéry numbers. It has been shown
by Apéry [2] that An and Bn satisfy the following three-term recurrence relations for
n ≥ 2,

An =
34n3 − 51n2 + 27n− 5

n3
An−1 −

(n− 1)3

n3
An−2, (1.3)

Bn =
11n2 − 11n+ 3

n2
Bn−1 +

(n− 1)2

n2
Bn−2, (1.4)

where A0 = 1, A1 = 5, B0 = 1, B1 = 3; see also [10, 13]. Congruences of the Apéry
numbers have been investigated by Ahlgren, Ekhad, Ono, and Zeilberger [1], Beukers
[3, 4], Chowla and Clowes [5] and Gessel [9]. Note that the recurrence relations (1.3)
and (1.4) can be derived by using Zeilberger’s algorithm [14].

Cohen [6] and Rhin obtained the following recurrence relation of the numbers Un

in connection with the rational approximation of ζ(4), see also [11],

Un+1 = R(n)Un +G(n)Un−1, n ≥ 1, (1.5)

where U0 = 1, U1 = 12 and

R(n) =
3(2n+ 1)(3n2 + 3n+ 1)(15n2 + 15n+ 4)

(n+ 1)5
, G(n) =

3n3(3n− 1)(3n+ 1)

(n+ 1)5
.

Expressions of Un as double sums of products of binomial coefficients have been derived
by Krattenthaler and Rivoal [11] and Zudilin [15, 16].

In this paper, we shall establish the 2-log-convexity of the sequences of the Apéry
numbers An, Bn, the Cohen-Rhin numbers Un and some other combinatorial sequences
based on the three-term recurrence relations. Recall that an infinite positive sequence
{an}∞n=0 is said to be log-convex if for all n ≥ 1,

a2
n ≤ an−1an+1. (1.6)

We say that {an}∞n=0 is 2-log-convex if {an}∞n=0 is log-convex and for all n ≥ 1,(
anan+2 − a2

n+1

)2 ≤
(
an−1an+1 − a2

n

) (
an+1an+3 − a2

n+2

)
. (1.7)

Meanwhile, the sequence {an}∞n=0 is called strictly log-convex (2-log-convex) if the
inequality in (1.6) ((1.7)) is strict for all n ≥ 1. Došlić [7] proved the log-convexity
of An by induction. In fact, using similar arguments one can show that {Bn}∞n=0 and
{Un}∞n=0 are log-convex.

This paper is organized as follows. In Section 2, we give a general framework to
prove the 2-log-convexity of a sequence {Sn}∞n=0 based on a lower bound fn and an

2



upper bound gn for the ratio Sn/Sn−1, where the numbers Sn satisfy a three-term
recurrence relation. Section 3 demonstrates how to find the bounds fn and gn. Section
4 is devoted to the computations of the upper bounds for the ratios An/An−1, Bn/Bn−1

and Un/Un−1. In Section 5, we show that the sequences of An, Bn, Un, the Motzkin
numbers, the Fine numbers, the Franel numbers of order 3 and 4 and the large Schröder
numbers are all 2-log-convex. We conclude this paper with a conjecture on the infinite
log-convexity in the spririt of the infinite log-concavity introduced by Moll [12].

2 A criterion

In this section, we present a criterion for the 2-log-convexity of a sequence {Sn}∞n=0

satisfying a three-term recurrence relation. We need the assumption that the ratio
Sn/Sn−1 has a lower bound fn and an upper bound gn.

Theorem 2.1. Suppose {Sn}∞n=0 is a positive log-convex sequence that satisfies the
recurrence relation

Sn = b(n)Sn−1 + c(n)Sn−2 (2.1)

for n ≥ 2. Let

a3(n) =2b(n+ 2)b2(n+ 1) + 2b(n+ 1)c(n+ 2)− b3(n+ 1)

− b(n+ 1)b(n+ 2)b(n+ 3)− b(n+ 3)c(n+ 2)− c(n+ 3)b(n+ 1),

a2(n) =4b(n+ 1)b(n+ 2)c(n+ 1) + 2c(n+ 1)c(n+ 2) + b2(n+ 1)b(n+ 2)b(n+ 3)

+ b(n+ 1)b(n+ 3)c(n+ 2) + b2(n+ 1)c(n+ 3)− 3c(n+ 1)b2(n+ 1)

− b(n+ 3)b(n+ 2)c(n+ 1)− c(n+ 3)c(n+ 1)− b2(n+ 2)b2(n+ 1)

− 2b(n+ 2)b(n+ 1)c(n+ 2)− c2(n+ 2),

a1(n) =− c(n+ 1)
(
2b(n+ 2)c(n+ 2)− 2b(n+ 2)c(n+ 1)

− 2b(n+ 3)b(n+ 2)b(n+ 1)− b(n+ 3)c(n+ 2)− 2c(n+ 3)b(n+ 1)

+ 3c(n+ 1)b(n+ 1) + 2b2(n+ 2)b(n+ 1)
)
,

a0(n) =− c2(n+ 1)
(
c(n+ 1)− b(n+ 2)b(n+ 3)− c(n+ 3) + b2(n+ 2)

)
and

∆(n) = 4a2
2(n)− 12a1(n)a3(n).
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Assume that a3(n) < 0 and ∆(n) > 0 for all n ≥ N , where N is a positive integer. If
there exist fn and gn such that for all n ≥ N ,

(C1) fn ≤ Sn

Sn−1
< gn;

(C2) fn ≥
−2a2(n)−

√
∆(n)

6a3(n)
;

(C3) a3(n)g3
n + a2(n)g2

n + a1(n)gn + a0(n) > 0,

then {Sn}∞n=N is strictly 2-log-convex, that is, for n ≥ N ,(
Sn−1Sn+1 − S2

n

) (
Sn+1Sn+3 − S2

n+2

)
>
(
SnSn+2 − S2

n+1

)2
. (2.2)

Proof. By the recurrence relation (2.1), we have(
Sn−1Sn+1 − S2

n

) (
Sn+1Sn+3 − S2

n+2

)
−
(
SnSn+2 − S2

n+1

)2

= Sn+1

(
2SnSn+1Sn+2 + Sn−1Sn+1Sn+3 − S3

n+1 − S2
nSn+3 − Sn−1S

2
n+2

)
= Sn+1

(
a3(n)S3

n + a2(n)S2
nSn−1 + a1(n)SnS

2
n−1 + a0(n)S3

n−1

)
.

Since {Sn}∞n=0 is a positive sequence, in order to prove (2.2), it suffices to show that
for all n ≥ N ,

a3(n)

(
Sn

Sn−1

)3

+ a2(n)

(
Sn

Sn−1

)2

+ a1(n)
Sn

Sn−1

+ a0(n) > 0. (2.3)

Consider the polynomial f(x) = a3(n)x3 + a2(n)x2 + a1(n)x+ a0(n). Note that

f ′(x) = 3a3(n)x2 + 2a2(n)x+ a1(n).

Since a3(n) < 0 and ∆(n) > 0 for all n ≥ N , we see that the quadratic function f ′(x)

is negative for x >
−2a2(n)−

√
∆(n)

6a3(n)
. Thus, f(x) is strictly decreasing on the interval

[
−2a2(n)−

√
∆(n)

6a3(n)
,+∞). From the assumption gn > fn ≥

−2a2(n)−
√

∆(n)

6a3(n)
, it follows that

f(x) is strictly decreasing on the interval [fn, gn]. Since Sn

Sn−1
∈ [fn, gn], it remains to

show that f(gn) > 0 for any n ≥ N , which is equivalent to condition (C3), that is,

a3(n)g3
n + a2(n)g2

n + a1(n)gn + a0(n) > 0

for any n ≥ N . This completes the proof.

3 A heuristic approach to computing the bounds

In this section, we present a procedure to derive a lower bound fn and an upper bound
gn for the ratio Sn/Sn−1 based on a three-term recurrence relation of Sn. We first
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describe how to obtain an upper bound gn as required in Theorem 2.1. As will be seen,
this procedure is not guaranteed to give an upper bound gn, but it is practically valid
for many cases.

Assume that lim
n→∞

b(n) = b and lim
n→∞

c(n) = c, where b and c are two constants and

b2 + 4c > 0. All sequences considered in this paper satisfy this condition. Let

x0 =
b+
√
b2 + 4c

2
. (3.1)

We begin with the case c(n) < 0, and we shall try to construct gn which satisfies the
condition (C3) together with the following inequality:

gn+1 −
(
b(n+ 1) +

c(n+ 1)

gn

)
> 0. (3.2)

In fact, the condition (3.2) is essential to find an upper bound gn for Sn/Sn−1. As will be
seen in the following lemma, if we find a function gn satisfying (3.2) and Sn/Sn−1 < gn
for small n, then we can deduce that gn is an upper bound for Sn/Sn−1 for any n.

Lemma 3.1. Let Sn be the sequence defined by the recurrence relation (2.1). Assume
that N is a positive integer such that c(n) < 0 for n ≥ N . If SN

SN−1
≤ gN and the

condition (3.2) holds for n ≥ N , then we have for n ≥ N ,

Sn

Sn−1

≤ gn. (3.3)

Proof. We use induction on n. Obviously, the lemma holds for n = N . We assume
that it is true for n = m ≥ N , that is, Sm

Sm−1
< gm. Since c(m) < 0 for m ≥ N , we see

that

c(m+ 1)
Sm−1

Sm

<
c(m+ 1)

gm
. (3.4)

We now consider the case n = m+ 1. From (2.1) and (3.4) it follows that

Sm+1

Sm

= b(m+ 1) + c(m+ 1)
Sm−1

Sm

≤ b(m+ 1) +
c(m+ 1)

gm
. (3.5)

From (3.2) and (3.5) we deduce that for m ≥ N ,

gm+1 −
Sm+1

Sm

≥ gm+1 −
(
b(m+ 1) +

c(m+ 1)

gm

)
> 0,

which is the statement of the lemma for n = m+ 1. This completes the proof.
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Now we present a heuristic procedure to find the desired upper bound gn. Let
gn = x0 as given by (3.1). If gn satisfies the conditions (C3) and (3.2), then gn is
the desired choice. Otherwise, let gn = x0 + x

n
. Substitute gn into (3.2) and let Y (n)

denote the numerator of the left hand side of (3.2), which is often a polynomial in n
and x. Setting the coefficient of the highest degree in n of Y (n) to be 0, we obtain an
equation in x. If x1 is the unique solution of this equation, then we set gn = x0 + x1

n
.

If gn = x0 + x1

n
satisfies the conditions (C3) and (3.2), then gn is the desired choice.

Otherwise, set gn = x0+ x1

n
+ x

n2 and repeat the above process to find a solution x2 of the
equation. By iteration, we may find x0, x1, . . . , xi such that gn = x0 + x1

n
+ x2

n2 + · · ·+ xi

ni

satisfies the conditions (C3) and (3.2).

For example, let Sn = An, where An is Apéry number defined by (1.1). Since
lim
n→∞

b(n) = 34 and lim
n→∞

c(n) = −1, by the definition of An, we have x0 = 17 + 12
√

2.

Since gn = 17 + 12
√

2 does not satisfy the condition (C3) in Theorem 2.1, we further
consider gn = 17 + 12

√
2 + x

n
. Let Y (n) denote the numerator of the left hand side of

(3.2). It is easy to see that Y (n) is a cubic polynomial in n with the leading coefficient
equal to

E1 = −(17
√

2− 24)(48x+ 864
√

2 + 1224).

Setting E1 = 0 gives x1 = −51
2
− 18
√

2. Again, gn = x0 + x1

n
does not satisfy (3.2). So

we continue to consider gn = x0 + x1

n
+ x

n2 and we find that x2 = 609
64

√
2 + 27

2
. Now,

gn = x0 + x1

n
+ x2

n2 does not satisfy the condition (C3). Repeating the above procedure,

we find that x3 = −225
128

√
2 − 645

256
and gn = x0 + x1

n
+ x2

n2 + x3

n3 satisfies (3.2) and the
condition (C3).

For the case c(n) > 0, we aim to construct an upper bound gn which satisfies
condition (C3) and the following inequality

gn −

(
b(n) +

c(n)

b(n− 1) + c(n−1)
gn−2

)
> 0. (3.6)

Similarly, if we find a function gn satisfying (3.6) and Sn/Sn−1 < gn for certain n,
then we can deduce that gn is an upper bound for any n. To be precise, we have the
following lemma.

Lemma 3.2. Let Sn be defined by (2.1). If there exists a positive integer N such that
the inequality (3.6) holds, SN

SN−1
≤ gN , SN+1

SN
≤ gN+1 and c(n) > 0 for n ≥ N , then we

have for n ≥ N ,

Sn

Sn−1

≤ gn. (3.7)
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Proof. We conduct induction on n. Clearly, the lemma holds for n = N and n = N+1.
Assume that it is true for n = m− 2 ≥ N , that is,

Sm−2

Sm−3

≤ gm−2. (3.8)

We shall show that the lemma is true for n = m, that is,

Sm

Sm−1

≤ gm. (3.9)

Since c(n) > 0 for n ≥ N , from (2.1) and (3.8) it follows that

Sm

Sm−1

= b(m) + c(m)
Sm−2

Sm−1

= b(m) +
c(m)

b(m− 1) + c(m− 1)Sm−3

Sm−2

(3.10)

≤ b(m) +
c(m)

b(m− 1) + c(m−1)
gm−2

.

In view of (3.6) and (3.10), we find that

gm −
Sm

Sm−1

≥ gm −

(
b(m) +

c(m)

b(m− 1) + c(m−1)
gm−2

)
> 0,

which yields (3.9). This completes the proof.

Now we can use the same approach as in the case c(n) < 0 to find an upper bound
gn. Moreover, if we have obtain an approximation gn that does not simultaneously
satisfy (3.2) ((3.6)) and the condition (C3), instead of going further to update the
estimation of gn, we may try to adjust some coefficients to find a desired bound. For
example, let Sn = Bn, where Bn is defined by (1.2). At some point, we get

gn =
11

2
+

5
√

5

2
−

(
11

2
+

5
√

5

2

)
1

n
(3.11)

+

(
7

10

√
5 +

3

2

)
1

n2
+

1

25n3
+

(
1

50
+

23
√

5

1250

)
1

n4
.

Here gn satisfies the condition (C3) in Theorem 2.1, but it fails to satisfy (3.6). If we
replace the coefficient 1

50
in (3.11) by 1

25
, then the adjusted bound g′n satisfies both

conditions (C3) and (3.6).

To conclude this section, we need to mention that it is much easier to find a lower
bound fn for the ratio Sn/Sn−1. In many cases, we have f(n) = b(n) when b(n) and
c(n) are positive for n ≥ N and fn = b(n) + c(n) when c(n) is negative and Sn ≥ Sn−1

for n ≥ N .
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4 Upper bounds for An/An−1, Bn/Bn−1 and Un/Un−1

In this section, we shall use the heuristic approach described in the previous section to
find upper bounds for the ratios An/An−1, Bn/Bn−1 and Un/Un−1.

Lemma 4.1. Let

P (n) =17 + 12
√

2−
(

51

2
+ 18
√

2

)
1

n
(4.1)

+

(
27

2
+

609

64

√
2

)
1

n2
−

(
645

256
+

225
√

2

128

)
1

n3
.

For n ≥ 2, we have An

An−1
< P (n).

Proof. For the Apéry numbers An, we use Lemma 3.1 by setting N = 2 and gn = P (n).
Evidently, A2

A1
< P (2). Also, it is easily checked that

P (n+ 1)−
(

(2n+ 1)(17n2 + 17n+ 5)

(n+ 1)3
− n3

(n+ 1)3P (n)

)

=
9(17− 12

√
2)(5664n2 − 3560

√
2n+ 1225)

256(256n3 − 384n2 − 60
√

2n+ 288n+ 90
√

2− 165)(n+ 1)3
,

which is positive for n ≥ 2. By lemma 3.1, we see that P (n) is an upper bound for
An/An−1 when n ≥ 2. This completes the proof.

Lemma 4.2. Let

T (n) =
11

2
+

5
√

5

2
−

(
11

2
+

5
√

5

2

)
1

n
(4.2)

+

(
7

10

√
5 +

3

2

)
1

n2
+

1

25n3
+

(
1

25
+

23
√

5

1250

)
1

n4
.

For n ≥ 20, we have Bn

Bn−1
< T (n).

Proof. Set N = 20 and gn = T (n) in Lemma 3.2. It is easy to check that B20

B19
< T (20)

and B21

B20
< T (21). Moreover, it is not difficult to verify that

T (n)−

11n2 − 11n+ 3

n2
+

(n− 1)2

n2
(

11n2−33n+25
(n−1)2

+ (n−2)2

(n−1)2
1

T (n−2)

)
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=
(123
√

5− 275)J(n)

1250n4K(n)
,

where J(n) and K(n) are given by

J(n) =1718750n6 − 4656250
√

5n5 − 18026250n5 + 98010000n4

+ 38885750
√

5n4 − 136205250
√

5n3 − 310595950n3 + 248642319
√

5n2

+ 557184100n2 − 233557457
√

5n− 522290000n+ 199152500 + 89063225
√

5,

K(n) =2500n6 − 30000n5 + 150000n4 − 500
√

5n4 − 401100n3 + 4500
√

5n3

+ 642325n2 − 30881
√

5n2 − 619575n+ 78143
√

5n− 60525
√

5 + 278125.

It follows that J(n) and K(n) are positive for n ≥ 20. Hence we have

11n2 − 11n+ 3

n2
+

(n− 1)2

n2
(

11n2−33n+25
(n−1)2

+ (n−2)2

(n−1)2
1

T (n−2)

) < T (n). (4.3)

In view of Lemma 3.2, we deduce that T (n) is an upper bound for Bn/Bn−1 when
n ≥ 20.

Using the same procedure, we find the following upper bound for Un/Un−1. The
proof is omitted.

Lemma 4.3. Let

Q(n) =135 + 78
√

3−
(

675

2
+ 195

√
3

)
1

n
+

(
9737

48

√
3 + 351

)
1

n2
(4.4)

−
(

3497

32

√
3 +

6045

32

)
1

n3
+

(
841763

27648

√
3 +

2701

32

)
1

n4
.

For n ≥ 100, we have Un

Un−1
< Q(n).

5 The 2-log-convexity

Based on the criterion given in Theorem 2.1 and the upper bounds obtained in the
previous section, we shall give the proofs of the 2-log-convexity of the sequences of
Apéry numbers and other aforementioned combinatorial numbers.

Theorem 5.1. The sequence {An}∞n=0 is strictly 2-log-convex.
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Proof. We first consider the case n ≥ 2. To apply Theorem 2.1, let

b(n) =
34n3 − 51n2 + 27n− 5

n3
and c(n) = −(n− 1)3

n3
.

It is straightforward to check that a3(n) < 0 and ∆(n) > 0 for n ≥ 2. Since(
n− 1

k

)2(
n− 1 + k

k

)2

≥
(
n− 2

k

)2(
n− 2 + k

k

)2

,

we have An−1 ≥ An−2. Let

fn =
33n3 − 48n2 + 24n− 4

n3
.

Thus, by the recurrence relation (1.3), we see that

An

An−1

=
34n3 − 51n2 + 27n− 5

n3
− (n− 1)3

n3

An−2

An−1

(5.1)

≥34n3 − 51n2 + 27n− 5− (n− 1)3

n3
= fn.

Set gn = P (n), where P (n) is given by (4.1). We proceed to verify the conditions (C1),
(C2) and (C3) in Theorem 2.1. By (5.1) and Lemma 4.1, we find that fn ≤ An

An−1
< gn,

which is the condition (C1). Define R1(n) = 6a3(n)fn + 2a2(n). It is easily checked

that R1(n) = −4H1(n)
L1(n)

, where H1(n) and L1(n) are polynomials in n and the leading

coefficients of H1(n) and L1(n) are positive. Hence we deduce that R1(n) < 0 for

n ≥ 2. Similarly, define R2(n) = ∆(n) − R2
1(n), which can be rewritten as −96H2(n)

L2(n)

where H2(n) and L2(n) are polynomials in n and the leading coefficients of H2(n) and
L2(n) are positive. Consequently, we deduce R2(n) < 0 for n ≥ 2. It follows that for
n ≥ 2,

6a3(n)fn + 2a2(n) < −
√

∆(n),

which is equivalent to the following inequality for n ≥ 2:

fn >
−2a2(n)−

√
∆(n)

6a3(n)
.

This is exactly the condition (C2). Finally, it remains to verify the condition (C3). To
this end, we find that

a3(n)g3
n + a2(n)g2

n + a1(n)gn + a0(n) (5.2)

= 9
(

30733178557 + 21731638968
√

2
) H3(n)

L3(n)
,
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where H3(n) and L3(n) are polynomials in n. Observe that the leading coefficients of
H3(n) and L3(n) are both positive. This implies that the right hand side of (5.2) is
positive for n ≥ 2. Now we are left with the case n = 1, that is

(A0A2 − A2
1)(A2A4 − A2

3) > (A1A3 − A2
2)2,

which can be easily checked. This completes the proof.

Theorem 5.2. The sequence {Bn}∞n=0 is strictly 2-log-convex.

Proof. For n ≥ 20, apply Theorem 2.1 with

fn =
11n2 − 11n+ 3

n2
,

and gn = T (n), where T (n) is given by (4.2). Using the argument in the proof of
Theorem 5.1, we find that fn and gn satisfy all the conditions in Theorem 2.1. Finally,
it is easy to verify that for 1 ≤ n ≤ 19,(

Bn−1Bn+1 −B2
n

) (
Bn+1Bn+3 −B2

n+2

)
>
(
BnBn+2 −B2

n+1

)2
.

This completes the proof.

Theorem 5.3. The sequence {Un}∞n=0 is strictly 2-log-convex.

The above theorem follows from Theorem 2.1 by setting

fn =
3(2n− 1)(3n2 − 3n+ 1)(15n2 − 15n+ 4)

n5

and setting gn = Q(n), where Q(n) is given by (4.4). The proof is similar to that of
Theorem 5.1, and it is omitted.

Došlić [7,8] has proved the log-convexity of several well-known sequences of combi-
natorial numbers such as the Motzkin numbers Mn, the Fine numbers Fn, the Franel
numbers F

(3)
n and F

(4)
n of order 3 and 4, and the large Schröder numbers sn. Based on

the recurrence relations satisfied by these numbers, we utilize Theorem 2.1 to deduce
that these sequences are all strictly 2-log-convex possibly except for a fixed number of
terms at the beginning.

We conclude this paper with a conjecture concerning the infinite log-convexity of
the Aéry numbers. The notion of infinite log-convexity is analogous to that of infinite
log-concavity introduced by Moll [12]. Given a sequence A = {ai}0≤i≤∞, define the
operator L by

L(A) = {bi}0≤i≤∞,

where bi = ai−1ai+1−a2
i for i ≥ 1. We say that {ai}0≤i≤∞ is k-log-convex if Lj ({ai}0≤i≤∞)

is log-convex for j = 0, 1, . . . , k−1, and that {ai}0≤i≤∞ is∞-log-convex if Lk ({ai}0≤i≤∞)
is log-convex for any k ≥ 0.
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Conjecture 5.4. The sequences {An}∞n=0, {Bn}∞n=0, {Un}∞n=0 and {sn}∞n=0 are infinitely

log-convex. The sequences {Mn}∞n=0, {Fn}∞n=0, {F (3)
n }∞n=0 and {F (4)

n }∞n=0 are k-log-
convex for any k ≥ 1 except for a constant number (depending on k) of terms at the
beginning.

References

[1] S. Ahlgren, S.B. Ekhad, K. Ono and D. Zeilberger, A binomial coefficient identity
associated to a conjecture of Beukers, Electron. J. Combin. 5 (1998), R10.
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