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Abstract. We show that the shifted rank, or srank, of any partition λ
with distinct parts equals the lowest degree of the terms appearing in the
expansion of Schur’s Qλ function in terms of power sum symmetric functions.
This gives an affirmative answer to a conjecture of Clifford. As pointed out
by Clifford, the notion of the srank can be naturally extended to a skew
partition λ/µ as the minimum number of bars among the corresponding skew
bar tableaux. While the srank conjecture is not valid for skew partitions, we
give an algorithm to compute the srank.

MSC2000 Subject Classification: 05E05, 20C25

1 Introduction

The main objective of this paper is to answer two open problems raised by
Clifford [2] on sranks of partitions with distinct parts, skew partitions and
Schur’s Q-functions. For any partition λ with distinct parts, we give a proof
of Clifford’s srank conjecture that the lowest degree of the terms in the power
sum expansion of Schur’s Q-function Qλ is equal to the number of bars in
a minimal bar tableaux of shape λ. Clifford [1, 2] also proposed an open
problem of determining the minimum number of bars among bar tableaux of
a skew shape λ/µ. As noted by Clifford [1], this minimum number can be
naturally regarded as the shifted rank, or srank, of λ/µ, denoted srank(λ/µ).
For a skew bar tableau, we present an algorithm to generate a skew bar
tableau without increasing the number of bars. This algorithm eventually
leads to a bar tableau with the minimum number of bars.

Schur’s Q-functions arise in the study of the projective representations of
symmetric groups [16], see also, Hoffman and Humphreys [5], Humphreys [6],
Józefiak [7], Morris [10, 12] and Nazarov [13]. Shifted tableaux are closely re-
lated to Schur’s Q-functions analogous to the role of ordinary tableaux to the
Schur functions. Sagan [15] and Worley [22] have independently developed
a combinatorial theory of shifted tableaux, which includes shifted versions
of the Robinson-Schensted-Knuth correspondence, Knuth’s equivalence re-
lations, Schützenberger’s jeu de taquin, etc. The connections between this
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combinatorial theory of shifted tableaux and the theory of projective repre-
sentations of the symmetric groups are further explored by Stembridge [19].

Clifford [2] studied the srank of shifted diagrams for partitions with dis-
tinct parts. Recall that the rank of an ordinary partition is defined as the
number of boxes on the main diagonal of the corresponding Young diagram.
Nazarov and Tarasov [14] found an important generalization of the rank of
an ordinary partition to a skew partition in their study of tensor products
of Yangian modules. A general theory of border strip decompositions and
border strip tableaux of skew partitions is developed by Stanley [17], and it
has been shown that the rank of a skew partition is the least number of strips
to construct a minimal border strip decomposition of the skew diagram. Mo-
tivated by Stanley’s theorem, Clifford [2] generalized the rank of a partition
to the rank of a shifted partition, called srank, in terms of the minimal bar
tableaux.

On the other hand, Clifford has noticed that the srank is closely related
to Schur’s Q-function, as suggested by the work of Stanley [17] on the rank
of a partition. Stanley introduced a degree operator by taking the degree
of the power sum symmetric function pµ as the number of nonzero parts
of the indexing partition µ. Furthermore, Clifford and Stanley [3] defined
the bottom Schur functions to be the sum of the lowest degree terms in the
expansion of the Schur functions in terms of the power sums. In [2] Clifford
studied the lowest degree terms in the expansion of Schur’s Q-functions in
terms of power sum symmetric functions and conjectured that the lowest
degree of the Schur’s Q-function Qλ is equal to the srank of λ. Our first
result is a proof of this conjecture.

However, in general, the lowest degree of the terms, which appear in the
expansion of the skew Schur’s Q-function Qλ/µ in terms of the power sums,
is not equal to the srank of the shifted skew diagram of λ/µ. This is different
from the case for ordinary skew partitions and skew Schur functions. Instead,
we will take an algorithmic approach to the computation of the srank of a
skew partition. It would be interesting to find an algebraic interpretation in
terms of Schur’s Q-functions.

2 Shifted diagrams and bar tableaux

Throughout this paper we will adopt the notation and terminology on parti-
tions and symmetric functions in [9]. A partition λ is a weakly decreasing se-
quence of positive integers λ1 ≥ λ2 ≥ . . . ≥ λk, denoted λ = (λ1, λ2, . . . , λk),
and k is called the length of λ, denoted `(λ). For convenience we may add
sufficient 0’s at the end of λ if necessary. If

∑k
i=1 λi = n, we say that λ is a

partition of the integer n, denoted λ ` n. For each partition λ there exists
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a geometric representation, known as the Young diagram, which is an array
of squares in the plane justified from the top and left corner with `(λ) rows
and λi squares in the i-th row. A partition is said to be odd (resp. even) if
it has an odd (resp. even) number of even parts. Let Po(n) denote the set
of all partitions of n with only odd parts. We will call a partition strict if
all its parts are distinct. Let D(n) denote the set of all strict partitions of n.
For each partition λ ∈ D(n), let S(λ) be the shifted diagram of λ, which is
obtained from the Young diagram by shifting the i-th row (i− 1) squares to
the right for each i > 1. For instance, Figure 1 illustrates the shifted diagram
of shape (8, 7, 5, 3, 1).

Figure 1: The shifted diagram of shape (8, 7, 5, 3, 1)

Given two partitions λ and µ, if for each i we have λi ≥ µi, then the skew
partition λ/µ is defined to be the diagram obtained from the diagram of λ by
removing the diagram of µ at the top-left corner. Similarly, the skew shifted
diagram S(λ/µ) is defined as the set-theoretic difference of S(λ) and S(µ).

Now we recall the definitions of bars and bar tableaux as given in Hoffman
and Humphreys [5]. Let λ ∈ D(n) be a partition with length `(λ) = k. Fixing
an odd positive integer r, three subsets I+, I0, I− of integers between 1 and
k are defined as follows:

I+ = {i : λj+1 < λi − r < λj for some j ≤ k, taking λk+1 = 0},

I0 = {i : λi = r},

I− = {i : r − λi = λj for some j with i < j ≤ k}.

Let I(λ, r) = I+ ∪ I0 ∪ I−. For each i ∈ I(λ, r), we define a new strict
partition λ(i, r) of D(n − r) in the following way:

(1) If i ∈ I+, then λi > r, and let λ(i, r) be the partition obtained from λ
by removing λi and inserting λi − r between λj and λj+1.

(2) If i ∈ I0, let λ(i, r) be the partition obtained from λ by removing λi.
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(3) If i ∈ I−, then let λ(i, r) be the partition obtained from λ by removing
both λi and λj.

Meanwhile, for each i ∈ I(λ, r), the associated r-bar is given as follows:

(1’) If i ∈ I+, the r-bar consists of the rightmost r squares in the i-th row
of S(λ), and we say that the r-bar is of Type 1.

(2’) If i ∈ I0, the r-bar consists of all the squares of the i-th row of S(λ),
and we say that the r-bar is of Type 2.

(3’) If i ∈ I−, the r-bar consists of all the squares of the i-th and j-th rows,
and we say that the r-bar is of Type 3.

For example, as shown in Figure 2, the squares filled with 6 are a 7-bar of
Type 1, the squares filled with 4 are a 3-bar of Type 2, and the squares filled
with 3 are a 7-bar of Type 3.

1 1 6 6 6 6 6 6 6

1 2 2 2 5 5 5

3 3 3 3 3 3

4 4 4

3

Figure 2: A bar tableau of shape (9, 7, 6, 3, 1)

A bar tableau of shape λ is an array of positive integers of shape S(λ)
subject to the following conditions:

(1) It is weakly increasing in every row;

(2) The number of parts equal to i is odd for each positive integer i;

(3) Each positive integer i can appear in at most two rows, and if i appears
in two rows, then these two rows must begin with i;

(4) The composition obtained by removing all squares filled with integers
larger than some i has distinct parts.

We say that a bar tableau T is of type ρ = (ρ1, ρ2, . . .) if the total number
of i’s appearing in T is ρi. For example, the bar tableau in Figure 3 is of
type (3, 1, 1, 1). For a bar tableau T of shape λ, we define its weight wt(T )
recursively by the following procedure. If T is empty, let wt(T ) = 1. Let ε(λ)
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denote the parity of the partition λ, i.e., ε(λ) = 0 if λ has an even number of
even parts; otherwise, ε(λ) = 1. Suppose that the largest numbers in T form
an r-bar, which is associated with an index i ∈ I(λ, r). Let j be the integer
that occurrs in the definitions of I+ and I−. Let T ′ be the bar tableau of
shape λ(i, r) obtained from T by removing this r-bar. Now, let

wt(T ) = ni wt(T ′), (2.1)

where

ni =















(−1)j−i21−ε(λ), if i ∈ I+,

(−1)`(λ)−i, if i ∈ I0,

(−1)j−i+λi21−ε(λ), if i ∈ I−.

(2.2)

For example, the weight of the bar tableau T in Figure 3 equals

wt(T ) = (−1)1−121−0 · (−1)1−121−1 · (−1)2−2 · (−1)1−1 = 2. (2.3)

1 1 1 3 4

2

Figure 3: A bar tableau of type (3, 1, 1, 1)

The following lemma will be used in Section 3 to determine whether
certain terms will vanish in the power sum expansion of Schur’s Q-functions
indexed by partitions with two distinct parts.

Lemma 2.1 Let λ = (λ1, λ2) be a strict partition with the two parts λ1 and
λ2 having the same parity. Given an partition σ = (σ1, σ2) ∈ Po(|λ|), if σ2 <
λ2, then among all bar tableaux of shape λ there exist only two bar tableaux
of type σ, say T1 and T2, and furthermore, we have wt(T1) + wt(T2) = 0.

Proof. Suppose that both λ1 and λ2 are even. The case when λ1 and λ2 are
odd numbers can be proved similarly. Note that σ2 < λ2 < λ1. By putting
2’s in the last σ2 squares of the second row and then filling the remaining
squares in the diagram with 1’s, we obtain one tableau T1. By putting 2’s in
the last σ2 squares of the first row and then filling the remaining squares with
1’s, we obtain another tableau T2. Clearly, both T1 and T2 are bar tableaux
of shape λ and type σ, and they are the only two such bar tableaux. We
notice that

wt(T1) = (−1)2−221−0 · (−1)2−1+λ121−1 = −2. (2.4)
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While, for the weight of T2, there are two cases to consider. If λ1 − σ2 > λ2,
then

wt(T2) = (−1)1−121−0 · (−1)2−1+λ1−σ221−1 = 2. (2.5)

If λ1 − σ2 < λ2, then

wt(T2) = (−1)2−121−0 · (−1)2−1+λ221−1 = 2. (2.6)

Thus we have wt(T2) = 2 in either case, so the relation wt(T1) + wt(T2) = 0
holds.

For example, taking λ = (8, 6) and σ = (11, 3), the two bar tableaux T1

and T2 in the above lemma are depicted as in Figure 4.

1 1 1 1 1 1 1 1

1 1 1 2 2 2

T1

1 1 1 1 1 2 2 2

1 1 1 1 1 1

T2

Figure 4: Two bar tableaux of shape (8, 6) and type (11, 3)

Clifford gave a natural generalization of bar tableaux to skew shapes [2].
Formally, a skew bar tableau of shape λ/µ is an assignment of nonnegative
integers to the squares of S(λ) such that in addition to the above four con-
ditions (1)-(4) we further impose the condition that

(5) the partition obtained by removing all squares filled with positive in-
tegers and reordering the remaining rows is µ.

For example, taking the skew partition (8, 6, 5, 4, 1)/(8, 2, 1), Figure 5 is
a skew bar tableau of such shape.

A bar tableau of shape λ is said to be minimal if there does not exist a
bar tableau with fewer bars. Motivated by Stanley’s results in [17], Clifford
defined the srank of a shifted partition S(λ), denoted srank(λ), as the number
of bars in a minimal bar tableau of shape λ [2]. Clifford also gave the following
formula for srank(λ).

Theorem 2.2 ([2, Theorem 4.1]) Given a strict partition λ, let o be the
number of odd parts of λ, and let e be the number of even parts. Then
srank(λ) = max(o, e + (`(λ) mod 2)).

Next we consider the number of bars in a minimal skew bar tableau of
shape λ/µ. Note that the squares filled with 0’s in the skew bar tableau give
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−→

0 0 0 0 0 0 0 0
1 1 1 3 3 3

0 0 2 2 2
1 1 1 1

0

−→

0 0 0 0 0 0 0 0
0 0 2 2 2

1 1 1 1
1 1 1

0

0 0 0 0 0 0 0 0
1 1 1 1

1 1 1
0 0

0

−→ 0 0 0 0 0 0 0 0
0 0

0

Figure 5: Checking the legality of a skew bar tableau

rise to a shifted diagram of shape µ by reordering the rows. Let or (resp.
er) be the number of nonempty rows of odd (resp. even) length with blank
squares, and let os (resp. es) be the number of rows of λ with some squares
filled with 0’s and an odd (resp. even) number of blank squares. It is obvious
that the number of bars in a minimal skew bar tableau is greater than or
equal to

os + 2es + max(or, er + ((er + or) mod 2)).

In fact the above quantity has been considered by Clifford [1]. Observe that
this quantity depends on the positions of the 0’s.

It should be remarked that a legal bar tableau of shape λ/µ may not exist
once the positions of 0’s are fixed. One open problem proposed by Clifford
[1] is to find a characterization of srank(λ/µ). In Section 5 we will give an
algorithm to compute the srank of a skew shape.

3 Clifford’s conjecture

In this section, we aim to show that the lowest degree of the power sum
expansion of a Schur’s Q-function Qλ equals srank(λ). Let us recall relevant
terminology on Schur’s Q-functions. Let x = (x1, x2, . . .) be an infinite se-
quence of independent indeterminates. We define the symmetric functions
qk = qk(x) in x1, x2, . . . for all integers k by the following expansion of the
formal power series in t:

∏

i≥1

1 + xit

1 − xit
=

∑

k

qk(x)tk.
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In particular, qk = 0 for k < 0 and q0 = 1. It immediately follows that
∑

i+j=n

(−1)iqiqj = 0, (3.7)

for all n ≥ 1. Let Q(a) = qa and

Q(a,b) = qaqb + 2
b

∑

m=1

(−1)mqa+mqb−m.

From (3.7) we see that Q(a,b) = −Q(b,a) and thus Q(a,a) = 0 for any a, b. In
general, for any strict partition λ, the symmetric function Qλ is defined by
the recurrence relations:

Q(λ1 ,...,λ2k+1) =

2k+1
∑

m=1

(−1)m+1qλm
Q(λ1,...,λ̂m,...,λ2k+1)

, (3.8)

Q(λ1 ,...,λ2k) =

2k
∑

m=2

(−1)mQ(λ1 ,λm)Q(λ2,...,λ̂m,...,λ2k), (3.9)

whereˆstands for a missing entry.

It was known that Qλ can be also defined as the specialization at t = −1
of the Hall-Littlewood functions associated with λ [9]. Originally, these Qλ

symmetric functions were introduced in order to express irreducible projec-
tive characters of the symmetric groups [16]. Note that the irreducible pro-
jective representations of Sn are in one-to-one correspondence with partitions
of n with distinct parts, see [7, 18, 19]. For any λ ∈ D(n), let 〈λ〉 denote
the character of the irreducible projective or spin representation indexed by
λ. Morris [11] has found a combinatorial rule for calculating the characters,
which is the projective analogue of the Murnaghan-Nakayama rule. In terms
of bar tableaux, Morris’s theorem reads as follows:

Theorem 3.1 ([11]) Let λ ∈ D(n) and π ∈ Po(n). Then

〈λ〉(π) =
∑

T

wt(T ) (3.10)

where the sum ranges over all bar tableaux of shape λ and type π.

The above theorem for projective characters implies the following formula,
which will be used later in the proof of Lemma 3.7.

Corollary 3.2 Let λ be a strict partition of length 2. Suppose that the two
parts λ1, λ2 are both odd. Then we have

〈λ〉(λ) = −1. (3.11)
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Proof. Let T be the bar tableau obtained by filling the last λ2 squares in
the first row of S(λ) with 2’s and the remaining squares with 1’s, and let T ′

be the bar tableau obtained by filling the first row of S(λ) with 1’s and the
second row with 2’s. Clearly, T and T ′ are of the same type λ. Let us first
consider the weight of T . If λ1 − λ2 < λ2, then

wt(T ) = (−1)2−121−0 · (−1)2−1+λ221−1 = −2.

If λ1 − λ2 > λ2, then

wt(T ) = (−1)1−121−0 · (−1)2−1+λ1−λ221−1 = −2.

In both cases, the weight of T ′ equals

wt(T ′) = (−1)2−2 · (−1)1−1 = 1.

Since there are only two bar tableaux, T and T ′, of type λ, the corollary
immediately follows from Theorem 3.1.

Let pk(x) denote the k-th power sum symmetric functions, i.e., pk(x) =
∑

i≥1 xk
i . For any partition λ = (λ1, λ2, · · · ), let pλ = pλ1

pλ2
· · · . The fun-

damental connection between Qλ symmetric functions and the projective
representations of the symmetric group is as follows.

Theorem 3.3 ([16]) Let λ ∈ D(n). Then we have

Qλ =
∑

π∈Po(n)

2[`(λ)+`(π)+ε(λ)]/2〈λ〉(π)
pπ

zπ

, (3.12)

where
zπ = 1m1m1! · 2

m2m2! · · · · , if π = 〈1m12m2 · · · 〉.

Stanley [17] introduced a degree operator on symmetric functions by
defining deg(pi) = 1, and so deg(pν) = `(ν). Clifford [2] applied this op-
erator to Schur’s Q-functions and obtained the following lower bound from
Theorem 3.3.

Corollary 3.4 ([2, Corollary 6.2]) The terms of the lowest degree in Qλ

have degree at least srank(λ).

The following conjecture is proposed by Clifford:

Conjecture 3.5 ([2, Conjecture 6.4]) The terms of the lowest degree in
Qλ have degree srank(λ).
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Our proof of the above conjecture depends on the Pfaffian formula for
Schur’s Q-functions. Given a skew-symmetric matrix A = (ai,j) of even size
2n × 2n, the Pfaffian of A, denoted Pf(A), is defined by

Pf(A) =
∑

π

(−1)cr(π)ai1j1 · · ·ainjn
,

where the sum ranges over all set partitions π of {1, 2, · · · , 2n} into two
element blocks ik < jk and cr(π) is the number of crossings of π, i.e., the
number of pairs h < k for which ih < ik < jh < jk.

Theorem 3.6 ([9]) Given a strict partition λ = (λ1, λ2, . . . , λ2n) satisfying
λ1 > . . . > λ2n ≥ 0, let Mλ = (Q(λi ,λj)). Then we have

Qλ = Pf(Mλ).

We first prove that Clifford’s conjecture holds for strict partitions of
length less than three. The proof for the general case relies on this special
case.

Lemma 3.7 Let λ be a strict partition of length `(λ) < 3. Then the terms
of the lowest degree in Qλ have degree srank(λ).

Proof. In view of Theorem 3.1 and Theorem 3.3, if there exists a unique bar
tableau of shape λ and type π, then the coefficient of pπ is nonzero in the
expansion of Qλ. There are five cases to consider.

(1) `(λ) = 1 and λ1 is odd. Clearly, we have srank(λ) = 1. Note that there
exists a unique bar tableau T of shape λ and of type λ with all squares
of S(λ) filled with 1’s. Therefore, the coefficient of pλ in the power sum
expansion of Qλ is nonzero and the lowest degree of Qλ is 1.

(2) `(λ) = 1 and λ1 is even. We see that srank(λ) = 2. Since the bars
are all of odd size, there does not exist any bar tableau of shape λ
and of type λ. But there is a unique bar tableau T of shape λ and of
type (λ1 − 1, 1), which is obtained by filling the rightmost square of
S(λ) with 2 and the remaining squares with 1’s. So the coefficient of
p(λ1−1,1) in the power sum expansion of Qλ is nonzero and the terms of
the lowest degree in Qλ have degree 2.

(3) `(λ) = 2 and the two parts λ1, λ2 have different parity. In this case,
we have srank(λ) = 1. Note that there exists a unique bar tableau T
of shape λ and of type (λ1 + λ2), which is obtained by filling all the
squares of S(λ) with 1’s. Thus, the coefficient of pλ1+λ2

in the power
sum expansion of Qλ is nonzero and the terms of lowest degree in Qλ

have degree 1.
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(4) `(λ) = 2 and the two parts λ1, λ2 are both even. It is easy to see that
srank(λ) = 2. Since there exists a unique bar tableau T of shape λ and
of type (λ1−1, λ2 +1), which is obtained by filling the rightmost λ2 +1
squares in the first row of S(λ) with 2’s and the remaining squares with
1’s, the coefficient of p(λ1−1,λ2+1) in the power sum expansion of Qλ is
nonzero; hence the lowest degree of Qλ is equal to 2.

(5) `(λ) = 2 and the two parts λ1, λ2 are both odd. In this case, we have
srank(λ) = 2. By Corollary 3.2, the coefficient of pλ in the power sum
expansion of Qλ is nonzero, and therefore the terms of the lowest degree
in Qλ have degree 2.

This completes the proof.

Given a strict partition λ, we consider the Pfaffian expansion of Qλ as
shown in Theorem 3.6. To prove Clifford’s conjecture, we need to determine
which terms may appear in the expansion of Qλ in terms of power sum
symmetric functions. Suppose that the Pfaffian expansion of Qλ is as follows:

Pf(Mλ) =
∑

π

(−1)cr(π)Q(λπ1
,λπ2

) · · ·Q(λπ2m−1
,λπ2m

), (3.13)

where the sum ranges over all set partitions π of {1, 2, · · · , 2m} into two
element blocks {(π1, π2), . . . , (π2m−1, π2m)} with π1 < π3 < · · · < π2m−1 and
π2k−1 < π2k for any k. For the above expansion of Qλ, the following two
lemmas will be used to choose certain lowest degree terms in the power sum
expansion of Q(λi,λj) in the matrix Mλ.

Lemma 3.8 Suppose that λ has both odd parts and even parts. Let λi1 (resp.
λj1) be the largest odd (resp. even) part of λ. If the power sum symmetric
function pλi1

+λj1
appears in the terms of lowest degree originated from the

product Q(λπ1
,λπ2

) · · ·Q(λπ2m−1
,λπ2m

) as in the expansion (3.13), then we have
(π1, π2) = (i1, j1).

Proof. Without loss of generality, we may assume that λi1 > λj1. By Lemma
3.7, the term pλi1

+λj1
appears in Q(λi1

,λj1
) with nonzero coefficients. Since

λi1, λj1 are the largest odd and even parts, pλi1
+λj1

does not appear as a
factor of any term of the lowest degree in the expansion of Q(λik

,λjk
), where

λik and λjk
have different parity. Meanwhile, if λik and λjk

have the same
parity, then we consider the bar tableaux of shape (λik , λjk

) and of type
(λi1 + λj1, λik + λjk

− λi1 − λj1). Observe that λik + λjk
− λi1 − λj1 < λjk

.
Since the lowest degree of Q(λik

,λjk
) is 2, from Lemma 2.1 it follows that

pλi1
+λj1

can not be a factor of any term of lowest degree in the power sum
expansion of Q(λik

,λjk
). This completes the proof.
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Lemma 3.9 Suppose that λ only has even parts. Let λ1, λ2 be the two largest
parts of λ (allowing λ2 = 0). If the power sums pλ1−1pλ2+1 appears in the
terms of the lowest degree given by the product Q(λπ1

,λπ2
) · · ·Q(λπ2m−1

,λπ2m
) as

in (3.13), then we have (π1, π2) = (1, 2).

Proof. From Case (4) of the proof of Lemma 3.7 it follows that pλ1−1pλ2+1

appears as a term of the lowest degree in the power sum expansion of Q(λ1 ,λ2).
We next consider the power sum expansion of any other Q(λi,λj). First, we
consider the case when λi+λj > λ2+1 and λi ≤ λ2. Since λi+λj−(λ2+1) <
λj, by Lemma 2.1, the term pλ2+1 is not a factor of any term of the lowest
degree in the power sum expansion of Q(λi,λj). Now we are left with the case
when λi + λj > λ1 − 1 and λi ≤ λ1 − 2. Since λi + λj − (λ1 − 1) < λj,
by Lemma 2.1 the term pλ1−1 does not appear as a factor in the terms of
the lowest degree of Q(λi ,λj). So we have shown that if either pλ2+1 or pλ1−1

appears as a factor of some lowest degree term for Q(λi,λj), then we deduce
that λi = λ1. Moreover, if both pλ1−1 and pλ2+1 are factors of the lowest
degree terms in the power sum expansion of Q(λ1 ,λj), then we have λj = λ2.
The proof is complete.

We now present the main result of this paper.

Theorem 3.10 For any λ ∈ D(n), the terms of the lowest degree in Qλ have
degree srank(λ).

Proof. We write the strict partition λ in the form (λ1, λ2, . . . , λ2m), where
λ1 > . . . > λ2m ≥ 0. Suppose that the partition λ has o odd parts and
e even parts (including 0 as a part). For the sake of presentation, let
(λi1, λi2 , . . . , λio) denote the sequence of odd parts in decreasing order, and
let (λj1, λj2, . . . , λje

) denote the sequence of even parts in decreasing order.

We first consider the case o ≥ e. In this case, it will be shown that
srank(λ) = o. By Theorem 2.2, if λ2m > 0, i.e., `(λ) = 2m, then we have

srank(λ) = max(o, e + 0) = o.

If λ2m = 0, i.e., `(λ) = 2m − 1, then we still have

srank(λ) = max(o, (e − 1) + 1) = o.

Let
A = pλi1

+λj1
· · · pλie+λje

pλie+1
pλie+2

· · · pλio
.

We claim that A appears as a term of the lowest degree in the power sum
expansion of Qλ. For this purpose, we need to determine those matchings π
of {1, 2, . . . , 2m} in (3.13), for which the power sum expansion of the product
Q(λπ1

,λπ2
) · · ·Q(λπ2m−1

,λπ2m
) contains A as a term of the lowest degree.
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By Lemma 3.8, if the pλi1
+λj1

appears as a factor in the lowest degree
terms of the power sum expansion of Q(λπ1

,λπ2
) · · ·Q(λπ2m−1

,λπ2m
), then we have

{π1, π2} = {i1, j1}. Iterating this argument, we see that if pλi1
+λj1

· · ·pλie+λje

appears as a factor in the lowest degree terms of Q(λπ1
,λπ2

) · · ·Q(λπ2m−1
,λπ2m

),
then we have

{π1, π2} = {i1, j1}, . . . , {π2e−1, π2e} = {ie, je}.

It remains to determine the ordered pairs

{(π2e+1, π2e+2), . . . , (π2m−1, π2m)}.

By the same argument as in Case (5) of the proof of Lemma 3.7, for any
e+1 ≤ k < l ≤ o, the term pλik

pλil
appears as a term of the lowest degree in

the power sum expansion of Q(λik
,λil

). Moreover, if the power sum symmetric
function pλie+1

pλie+2
· · · pλio

appears as a term of the lowest degree in the
power sum expansion of the product Q(λπ2e+1

,λπ2e+2
) · · ·Q(λπ2m−1

,λπ2m
), then

the composition of the pairs {(π2e+1, π2e+2), . . . , (π2m−1, π2m)} could be any
matching of {1, 2, . . . , 2m}/{i1, j1, . . . , ie, je}.

To summarize, there are (2(m−e)−1)!! matchings π such that A appears
as a term of the lowest degree in the power sum expansion of the product
Q(λπ1

,λπ2
) · · ·Q(λπ2m−1

,λπ2m
). Combining Corollary 3.2 and Theorem 3.3, we

find that the coefficient of pλik
pλil

(e + 1 ≤ k < l ≤ o) in the power sum

expansion of Q(λik
,λil

) is − 4
λik

λil

. It follows that the coefficient of A in the

expansion of the product Q(λπ1
,λπ2

) · · ·Q(λπ2m−1
,λπ2m

) is independent of the
choice of π. Since (2(m − e) − 1)!! is an odd number, the term A will not
vanish in the expansion of Qλ. Note that the degree of A is e + (o − e) = o,
which is equal to srank(λ), as desired.

Similarly, we consider the case e > o. In this case, we aim to show that
srank(λ) = e. By Theorem 2.2, if λ2m > 0, i.e., `(λ) = 2m, then we have

srank(λ) = max(o, e + 0) = e.

If λ2m = 0, i.e., `(λ) = 2m − 1, then we still have

srank(λ) = max(o, (e − 1) + 1) = e.

Let

B = pλi1
+λj1

· · · pλio+λjo
pλjo+1

−1pλjo+2
+1 · · ·pλje−1

−1pλje+1.

We proceed to prove that B appears as a term of the lowest degree in the
power sum expansion of Qλ. Applying Lemma 3.8 repeatedly, we deduce
that if pλi1

+λj1
· · · pλio+λjo

appears as a factor in the lowest degree terms of
the product Q(λπ1

,λπ2
) · · ·Q(λπ2m−1

,λπ2m
), then

{π1, π2} = {i1, j1}, . . . , {π2o−1, π2o} = {io, jo}. (3.14)
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On the other hand, iteration of Lemma 3.9 reveals that if the power sum
symmetric function pλjo+1

−1pλjo+2
+1 · · · pλje−1

−1pλje+1 appears as a term of the
lowest degree in the power sum expansion of Q(λπ2o+1

,λπ2o+2
) · · ·Q(λπ2m−1

,λπ2m
),

then

{π2o+1, π2o+2} = {jo+1, jo+2}, . . . , {π2m−1, π2m} = {je−1, je}. (3.15)

Therefore, if B appears as a term of the lowest degree in the power sum
expansion of Q(λπ1

,λπ2
) · · ·Q(λπ2m−1

,λπ2m
), then the matching π is uniquely

determined by (3.14) and (3.15). Note that the degree of B is e, which
coincides with srank(λ).

Since there is always a term of degree srank(λ) in the power sum expan-
sion of Qλ, the theorem follows.

4 Skew Schur’s Q-functions

In this section, we show that the srank srank(λ/µ) is a lower bound of the
lowest degree of the terms in the power sum expansion of the skew Schur’s
Q-function Qλ/µ. Note that Clifford’s conjecture does not hold for skew
shapes.

We first recall a definition of the skew Schur’s Q-function in terms of strip
tableaux. The concept of strip tableaux were introuduced by Stembridge [18]
to describe the Morris rule for the evaluation of irreducible spin characters.
Given a skew partition λ/µ, the j-th diagonal of the skew shifted diagram
S(λ/µ) is defined as the set of squares (1, j), (2, j+1), (3, j+2), . . . in S(λ/µ).
A skew diagram S(λ/µ) is called a strip if it is rookwise connected and each
diagonal contains at most one box. The height h of a strip is defined to be
the number of rows it occupies. A double strip is a skew diagram formed by
the union of two strips which both start on the diagonal consisting of squares
(j, j). The depth of a double strip is defined to be α +β if it has α diagonals
of length two and its diagonals of length one occupy β rows. A strip tableau
of shape λ/µ and type π = (π1, . . . , πk) is defined to be a sequence of shifted
diagrams

S(µ) = S(λ0) ⊆ S(λ1) ⊆ · · · ⊆ S(λk) = S(λ)

with |λi/λi−1| = πi (1 ≤ i ≤ k) such that each skew shifted diagram
S(λi/λi−1) is either a strip or a double strip.

The skew Schur’s Q-function can be defined as the weight generating
function of strip tableaux in the following way. For a strip of height h we
assign the weight (−1)h−1, and for a double strip of depth d we assign the
weight 2(−1)d−1. The weight of a strip tableau T , denoted wt(T ), is the
product of the weights of strips and double strips of which T is composed.
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Then the skew Schur’s Q-function Qλ/µ is given by

Qλ/µ =
∑

π∈Po(|λ/µ|)

∑

T

2`(π)wt(T )
pπ

zπ
, (4.16)

where T ranges over all strip tableaux T of shape λ/µ and type π, see [18,
Theorem 5.1].

Józefiak and Pragacz [8] obtained the following Pfaffian formula for the
skew Schur’s Q-function.

Theorem 4.1 ([8]) Let λ, µ be strict partitions with m = `(λ), n = `(µ),
µ ⊂ λ, and let M(λ, µ) denote the skew-symmetric matrix

(

A B
−Bt 0

)

,

where A = (Q(λi ,λj)) and B = (Q(λi−µn+1−j )).

Then

(1) if m + n is even, we have Qλ/µ = Pf(M(λ, µ));

(2) if m+n is odd, we have Qλ/µ = Pf(M(λ, µ′)), where µ′ = (µ1, · · · , µn, 0).

A combinatorial proof of the above theorem was given by Stembridge [20] in
terms of lattice paths, and later, Hamel [4] gave an interesting generalization
by using the border strip decompositions of the shifted diagram.

Given a skew partition λ/µ, Clifford [1] constructed a bijection between
skew bar tableaux of shape λ/µ and skew strip tableaux of the same shape,
which preserves the type of the tableau. Using this bijection, it is straight-
forward to derive the following result.

Proposition 4.2 The terms of the lowest degree in Qλ/µ have degree at least
srank(λ/µ).

Different from the case of non-skew shapes, in general, the lowest degree
terms in Qλ/µ do not have the degree srank(λ/µ). For example, take the
skew partition (4, 3)/3. It is easy to see that srank((4, 3)/3) = 2. While,
using Theorem 4.1 and Stembridge’s SF Package for Maple [21], we obtain
that

Q(4,3)/3 = Pf













0 Q(4,3) Q(4) Q(1)

Q(3,4) 0 Q(3) Q(0)

−Q(4) −Q(3) 0 0

−Q(1) −Q(0) 0 0













= 2p4
1. (4.17)

This shows that the lowest degree of Q(4,3)/3 equals 4, which is strictly greater
than srank((4, 3)/3).
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5 The srank of skew partitions

In this section, we present an algorithm to determine the srank for the skew
partition λ/µ. In fact, the algorithm leads to a configuration of 0’s. To
obtain the srank of a skew partition, we need to minimize the number of
bars by adjusting the positions of 0’s. Given a configuration C of 0’s in the
shifted diagram S(λ), let

κ(C) = os + 2es + max(or, er + ((er + or) mod 2)),

where or (resp. er) counts the number of nonempty rows in which there are
an odd (resp. even) number of squares and no squares are filled with 0, and
os (resp. es) records the number of rows in which at least one square is filled
with 0 but there are an odd (resp. nonzero even) number of blank squares.

If there exists at least one bar tableau of type λ/µ under some configu-
ration C, we say that C is admissible. For a fixed configuration C, each row
is one of the following eight possible types:

(1) an even row bounded by an even number of 0’s, denoted (e, e),

(2) an odd row bounded by an even number of 0’s, denoted (e, o),

(3) an odd row bounded by an odd number of 0’s, denoted (o, e),

(4) an even row bounded by an odd number of 0’s, denoted (o, o),

(5) an even row without 0’s, denoted (∅, e),

(6) an odd row without 0’s, denoted (∅, o),

(7) an even row filled with 0’s, denoted (e, ∅),

(8) an odd row filled with 0’s, denoted (o, ∅).

Given two rows with respective types s and s′ for some configuration C,
if we can obtain a new configuration C ′ by exchanging the locations of 0’s in
these two rows such that their new types are t and t′ respectively, then denote
it by C ′ = C

([

s
s′

]

→
[

t
t′

])

. Let or, er, os, es be defined as above corresponding
to configuration C, and let o′r, e

′
r, o

′
s, e

′
s be those of C ′.

In the following we will show that how the quantity κ(C) changes when
exchanging the locations of 0’s in C.

Lemma 5.1 If C ′ = C
([

s
s′

]

→
[

s
s′

])

or C ′ = C
(

[

s
s′

]

→
[

s′

s

])

, i.e., the types

of the two involved rows are remained or exchanged, where s, s′ are any two
possible types, then κ(C ′) = κ(C).
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Lemma 5.2 If C ′ = C
([

(e,e)

(∅,o)

]

→
[

(∅,e)

(e,o)

])

, then κ(C ′) ≤ κ(C).

Proof. In this case we have

o′s = os + 1, e′s = es − 1, o′r = or − 1, e′r = er + 1.

Note that or + er = `(λ) − `(µ). Now there are two cases to consider.

Case I. The skew partition λ/µ satisfies that `(λ) − `(µ) ≡ 0 (mod 2).

(1) If or ≤ er, then o′r ≤ e′r and

κ(C) = os + 2es + er,

κ(C ′) = os + 1 + 2(es − 1) + e′r = os + 2es + er = κ(C).

(2) If or ≥ er + 2, then o′r = or − 1 ≥ er + 1 = e′r and

κ(C) = os + 2es + or,

κ(C ′) = os + 2es − 1 + o′r = os + 2es + or − 2 < κ(C).

Case II. The skew partition λ/µ satisfies that `(λ) − `(µ) ≡ 1 (mod 2).

(1) If or ≤ er + 1, then o′r < e′r and

κ(C) = os + 2es + er + 1,

κ(C ′) = os + 2es − 1 + e′r + 1 = os + 2es + er + 1 = κ(C).

(2) If or ≥ er + 3, then o′r = or − 1 ≥ er + 2 > e′r and

κ(C) = os + 2es + or,

κ(C ′) = os + 2es − 1 + o′r = os + 2es + or − 2 < κ(C).

Therefore, the inequality κ(C ′) ≤ κ(C) holds under the assumption.

Lemma 5.3 If C ′ = C
([

(o,e)

(∅,e)

]

→
[

(∅,o)

(o,o)

])

, then κ(C ′) ≤ κ(C).

Proof. In this case we have

o′s = os + 1, e′s = es − 1, o′r = or + 1, e′r = er − 1.

Now there are two possibilities.

Case I. The skew partition λ/µ satisfies that `(λ) − `(µ) ≡ 0 (mod 2).
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(1) If or ≤ er − 2, then o′r ≤ e′r and

κ(C) = os + 2es + er,

κ(C ′) = os + 1 + 2(es − 1) + e′r = os + 2es + er − 2 < κ(C).

(2) If or ≥ er, then o′r = or + 1 > er − 1 = e′r and

κ(C) = os + 2es + or,

κ(C ′) = os + 2es − 1 + o′r = os + 2es + or = κ(C).

Case II. The skew partition λ/µ satisfies that `(λ) − `(µ) ≡ 1 (mod 2).

(1) If or ≤ er − 3, then o′r < e′r and

κ(C) = os + 2es + er + 1,

κ(C ′) = os + 2es − 1 + e′r + 1 = os + 2es + er − 1 < κ(C).

(2) If or ≥ er − 1, then o′r = or + 1 > er − 1 = e′r and

κ(C) = os + 2es + or,

κ(C ′) = os + 2es − 1 + o′r = os + 2es + or = κ(C).

In both cases we have κ(C ′) ≤ κ(C), as required.

Lemma 5.4 If C ′ = C
([

(e,e)

(o,e)

]

→
[

(o,o)

(e,o)

])

, then κ(C ′) < κ(C).

Proof. In this case, we have

o′s = os + 2, e′s = es − 2, o′r = or, e′r = er.

Therefore,

κ(C ′) = o′s + 2e′s + max(o′r, e
′
r + ((e′r + o′r) mod 2)) = κ(C) − 2.

The desired inequality immediately follows.

Lemma 5.5 If C ′ = C
([

(e,o)

(∅,e)

]

→
[

(∅,o)

(e,∅)

])

, then κ(C ′) ≤ κ(C).

Proof. Under this transformation we have

o′s = os − 1, e′s = es, o′r = or + 1, e′r = er − 1.

Since or + er = `(λ) − `(µ) is invariant, there are two cases.

Case I. The skew partition λ/µ satisfies that `(λ) − `(µ) ≡ 0 (mod 2).
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(1) If or ≥ er, then o′r ≥ e′r and

κ(C ′) = o′s + 2e′s + o′r = os − 1 + 2es + or + 1 = κ(C).

(2) If or ≤ er − 2, then o′r = or + 1 ≤ er − 1 = e′r and

κ(C ′) = os − 1 + 2es + e′r = os + 2es + er − 2 < κ(C).

Case II. The skew partition λ/µ satisfies that `(λ) − `(µ) ≡ 1 (mod 2).

(1) If or ≥ er + 1, then o′r = or + 1 ≥ er + 2 > e′r + 1 and

κ(C ′) = o′s + 2e′s + o′r = os + 2es + or = κ(C).

(2) If or ≤ er − 1, then o′r = or + 1 ≤ er = e′r + 1 and

κ(C ′) = o′s + 2e′s + e′r + 1 = os + 2es + er − 1 < κ(C).

Hence the proof is complete.

Lemma 5.6 If C ′ = C
([

(o,o)

(∅,o)

]

→
[

(∅,e)

(o,∅)

])

, then κ(C ′) ≤ κ(C).

Proof. In this case we have

o′s = os − 1, e′s = es, o′r = or − 1, e′r = er + 1.

There are two possibilities:

Case I. The skew partition λ/µ satisfies that `(λ) − `(µ) ≡ 0 (mod 2).

(1) If or ≥ er + 2, then o′r = or − 1 ≥ er + 1 = e′r and

κ(C ′) = o′s + 2e′s + o′r = os − 1 + 2es + or − 1 < κ(C).

(2) If or ≤ er, then o′r = or − 1 ≤ er − 1 < e′r and

κ(C ′) = os − 1 + 2es + e′r = os + 2es + er = κ(C).

Case II. The skew partition λ/µ satisfies that `(λ) − `(µ) ≡ 1 (mod 2).

(1) If or ≥ er + 3, then o′r = or − 1 ≥ er + 2 = e′r + 1 and

κ(C ′) = o′s + 2e′s + o′r = os + 2es + or − 2 < κ(C).
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(2) If or ≤ er + 1, then o′r = or − 1 ≤ er < e′r + 1 and

κ(C ′) = o′s + 2e′s + e′r + 1 = os + 2es + er + 1 = κ(C).

Therefore, in both cases we have κ(C ′) ≤ κ(C).

Lemma 5.7 If C ′ = C
([

(e,o)

(o,o)

]

→
[

(o,e)

(e,∅)

])

or C ′ = C
([

(o,o)

(e,o)

]

→
[

(e,e)

(o,∅)

])

, then

κ(C ′) = κ(C).

Proof. In each case we have

o′s = os − 2, e′s = es + 1, o′r = or, e′r = er.

Therefore

κ(C ′) = o′s + 2e′s + max(o′r, e
′
r + ((e′r + o′r) mod 2)) = κ(C),

as desired.

Lemma 5.8 If C ′ is one of the following possible cases:

C
([

(e,e)

(e,e)

]

→
[

(e,e)

(e,∅)

])

, C
([

(e,e)

(o,o)

]

→
[

(o,o)

(e,∅)

])

, C
([

(e,o)

(e,e)

]

→
[

(e,o)

(e,∅)

])

,

C
([

(e,e)

(∅,e)

]

→
[

(∅,e)

(e,∅)

])

, C
([

(o,o)

(o,e)

]

→
[

(o,o)

(o,∅)

])

, C
([

(o,e)

(e,o)

]

→
[

(e,o)

(o,∅)

])

,

C
([

(o,e)

(o,e)

]

→
[

(o,e)

(o,∅)

])

, C
([

(o,e)

(∅,o)

]

→
[

(∅,o)

(o,∅)

])

,

then κ(C ′) < κ(C).

Proof. In each case we have

o′s = os, e′s = es − 1, o′r = or, e′r = er.

Therefore

κ(C ′) = o′s + 2e′s + max(o′r, e
′
r + ((e′r + o′r) mod 2)) < κ(C),

as required.

Note that Lemmas 5.1-5.8 cover all possible transformations of exchanging
the locations of 0’s in two involved rows. Lemmas 5.2-5.4 imply that, to
minimize the number of bars, we should put 0’s in the skew shifted diagram
such that there are as more as possible rows for which the first several squares
are filled with 0’s and then followed by an odd number of blank squares.
Meanwhile, from Lemmas 5.5-5.8 we know that the number of rows fully
filled with 0’s should be as more as possible. Based on these observations,
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we have the following algorithm to determine the location of 0’s for a given
skew partition λ/µ, where both λ and µ are strict partitions. Using this
algorithm we will obtain a shifted diagram with some squares filled with
0’s such that the corresponding quantity κ(C) is minimized. This property
allows us to determine the srank of λ/µ.

The Algorithm for Determining the Locations of 0’s:

(S1) Let C1 = S(λ) be the initial configuration of λ/µ with blank square.
Set i = 1 and J = {1, . . . , `(λ)}.

(S2) For i ≤ `(µ), iterate the following procedure:

(A) If µi = λj for some j ∈ J , then we fill the j-th row of Ci with 0.

(B) If µi 6= λj for any j ∈ J , then there are two possibilities.

(B1) λj − µi is odd for some j ∈ J and λj > µi. Then we take the
largest such j and fill the leftmost µi squares with 0 in the
j-th row of Ci.

(B2) λj − µi is even for any j ∈ J and λj > µi. Then we take the
largest such j and fill the leftmost µi squares by 0 in the j-th
row of Ci.

Denote the new configuration by Ci+1. Set J = J\{j}.

(S3) Set C∗ = Ci, and we get the desired configuration.

It should be emphasized that although the above algorithm does not
necessarily generate a bar tableau, it is sufficient for the computation of the
srank of a skew partition.

Using the arguments in the proofs of Lemmas 5.1-5.8, we can derive the
following crucial property of the configuration C∗. The proof is omitted since
it is tedious and straightforward.

Proposition 5.9 For any configuration C of 0’s in the skew shifted diagram
of λ/µ, we have κ(C∗) ≤ κ(C).

Theorem 5.10 Given a skew partition λ/µ, let C∗ be the configuration of
0’s obtained by applying the algorithm described above. Then

srank(λ/µ) = κ(C∗). (5.18)

Proof. Suppose that for the configuration C∗ there are o∗r rows of odd size
with blank squares, and there are o∗s rows with at least one square filled with
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0 and an odd number of squares filled with positive integers. Likewise we let
e∗r and e∗s denote the number of remaining rows. Therefore,

κ(C∗) = o∗s + 2e∗s + max(o∗r, e
∗
r + ((e∗r + o∗r) mod 2)).

Since for each configuration C the number of bars in a minimal bar tableau
is greater than or equal to κ(C), by Proposition 5.9, it suffices to confirm the
existence of a skew bar tableau, say T , with κ(C∗) bars.

Note that it is possible that the configuration C∗ is not admissible. The
key idea of our proof is to move 0’s in the diagram such that the resulting
configuration C ′ is admissible and κ(C ′) = κ(C∗). To achieve this goal, we will
use the numbers {1, 2, . . . , κ(C∗)} to fill up the blank squares of C∗ guided by
the rule that the bars of Type 2 or Type 3 will occur before bars of Type 1.

Let us consider the rows without 0’s, and there are two possibilities: (A)
o∗r ≥ e∗r, (B) o∗r < e∗r.

In Case (A) we choose a row of even size and a row of odd size, and fill
up these two rows with κ(C∗) to generate a bar of Type 3. Then we continue
to choose a row of even size and a row of odd size, and fill up these two
rows with κ(C∗) − 1. Repeat this procedure until all even rows are filled up.
Finally, we fill the remaining rows of odd size with κ(C∗) − e∗r, κ(C∗) − e∗r −
1, . . . , κ(C∗) − o∗r + 1 to generate bars of Type 2.

In Case (B) we choose the row with the i-th smallest even size and the
row with the i-th smallest odd size and fill their squares with the number
κ(C∗)− i+1 for i = 1, . . . , o∗r. In this way, we obtain o∗r bars of Type 3. Now
consider the remaining rows of even size without 0’s. There are two subcases.

(B1) The remaining diagram, obtained by removing the previous o∗r bars of
Type 3, does not contain any row with only one square. Under this
assumption, it is possible to fill the squares of a row of even size with
the number κ(C∗) − o∗r except the leftmost square. This operation will
result in a bar of Type 1. After removing this bar from the diagram,
we may combine this leftmost square of the current row and another
row of even size, if it exists, and to generate a bar of Type 3. Repeating
this procedure until there are no more rows of even size, we obtain a
sequence of bars of Type 1 and Type 3. Evidently, there is a bar of
Type 2 with only one square. To summarize, we have max(o∗r, e

∗
r +

((e∗r + o∗r) mod 2)) bars.

(B2) The remaining diagram contains a row composed of the unique square
filled with 0. In this case, we will move this 0 into the leftmost square
of a row of even size, see Figure 6. Denote this new configuration by
C ′, and from Lemma 5.6 we see that κ(C∗) = κ(C ′). If we start with
C ′ instead of C∗, by a similar construction, we get max(o′r, e

′
r + ((e′r +

o′r) mod 2)) bars, occupying the rows without 0’s in the diagram.
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Figure 6: Vacating the unique square at the bottom of the diagram

Without loss of generality, we may assume that for the configuration C∗

the rows without 0’s in the diagram have been occupied by the bars with
the first max(o∗r, e

∗
r + ((e∗r + o∗r) mod 2)) positive integers in the decreasing

order, namely, (κ(C∗), . . . , 2, 1, 0). By removing these bars and reordering the
remaining rows, we may get a shifted diagram with which we can continue
the above procedure to construct a bar tableau.

At this point, it is necessary to show that it is possible to use o∗s + 2e∗s
bars to fill this diagram. In doing so, we process the rows from bottom to
top. If the bottom row has an odd number of blank squares, then we simply
assign the symbol o∗s + 2e∗s to these squares to produce a bar of Type 1. If
the bottom row are completely filled with 0’s, then we continue to deal with
the row above the bottom row. Otherwise, we fill the rightmost square of
the bottom row with o∗s + 2e∗s and the remaining squares with o∗s + 2e∗s − 1.
Suppose that we have filled i rows from the bottom and all the involved bars
have been removed from the diagram. Then we consider the (i + 1)-th row
from the bottom. Let t denote the largest number not greater than o∗s + 2e∗s
which has not been used before. If all squares in the (i + 1)-th row are filled
with 0’s, then we continue to deal with the (i + 2)-th row. If the number of
blank squares in the (i + 1)-th row is odd, then we fill these squares with t.
If the number of blank squares in the (i + 1)-th row is even, then we are left
with two cases:

(A’) The rows of the diagram obtained by removing the rightmost square
of the (i + 1)-th row have distinct lengths. In this case, we fill the
rightmost square with t and the remaining blank squares of the (i+1)-
th row with t − 1.

(B’) The removal of the rightmost square of the (i+1)-th row does not result
in a bar tableau. Suppose that the (i+1)-th row has m squares in total.
It can only happen that the row underneath the (i+1)-th row has m−1
squares and all these squares are filled with 0’s. By interchanging the
location of 0’s in these two rows, we get a new configuration C ′, see
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Figure 7. From Lemma 5.7 we deduce that κ(C∗) = κ(C ′). So we can
transform C∗ to C ′ and continue to fill up the (i + 1)-th row.

0 0 0 0 0 0

0 0 0
-

0 0 0

0 0 0 0 0 0

Figure 7: Interchanging the location of 0’s in two neighbored rows

Finally, we arrive at a shifted diagram whose rows are all filled up. Clearly,
for those rows containing at least one 0 there are o∗s + 2e∗s bars that are
generated in the construction, and for those rows containing no 0’s there are
max(o∗r, e

∗
r + ((e∗r + o∗r) mod 2)) bars that are generated. It has been shown

that during the procedure of filling the diagram with nonnegative numbers
if the configuration C∗ is transformed to another configuration C ′, then κ(C ′)
remains equal to κ(C∗). Hence the above procedure leads to a skew bar
tableau of shape λ/µ with κ(C∗) bars. This completes the proof.
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[7] T. Józefiak, Characters of projective representations of symmetric
groups, Exposition. Math. 7 (1989), 193–247.

24
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