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Abstract. We establish a stronger symmetry between the numbers of northeast and
southeast chains in the context of 01-fillings of moon polyominoes. Let M be a moon
polyomino with n rows and m columns. Consider all the 01-fillings of M in which
every row has at most one 1. We introduce four mixed statistics with respect to a
bipartition of rows or columns of M. More precisely, let S ⊆ {1, 2, . . . , n} and let
R(S) be the union of rows whose indices are in S. For any filling M , the top-mixed
(resp., bottom-mixed) statistic α(S;M) (resp., β(S;M)) is the sum of the number of
northeast chains whose top (resp., bottom) cell is in R(S), together with the number
of southeast chains whose top (resp., bottom) cell is in the complement of R(S).
Similarly, we define the left-mixed and right-mixed statistics γ(T ;M) and δ(T ;M),
where T is a subset of the column index set {1, 2, . . . ,m}. Let λ(A;M) be any of
these four statistics α(S;M), β(S;M), γ(T ;M), and δ(T ;M); we show that the joint
distribution of the pair (λ(A;M), λ(Ā;M)) is symmetric and independent of the subsets
S, T . In particular, the pair of statistics (λ(A;M), λ(Ā;M)) is equidistributed with
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(se(M), ne(M)), where se(M) and ne(M) are the numbers of southeast chains and
northeast chains of M , respectively.
Keywords: mixed statistic, polyomino, symmetric distribution
AMS Classification: 05A18, 05A05, 05A15

1 Introduction

Recently it is observed that the numbers of crossings and nestings have a symmetric
distribution over many families of combinatorial objects, such as matchings and set
partitions. Recall that a matching of [2n] = {1, 2, . . . , 2n} is a partition of the set [2n]
with the property that each block has exactly two elements. It can be represented as
a graph with vertices 1, 2, . . . , 2n drawn on a horizontal line in increasing order, where
two vertices i and j are connected by an edge if and only if {i, j} is a block. We say that
two edges (i1, j1) and (i2, j2) form a crossing if i1 < i2 < j1 < j2; they form a nesting
if i1 < i2 < j2 < j1. The symmetry of the joint distribution of crossings and nestings
follows from the bijections of de Sainte-Catherine [8], who also found the generating
functions for the number of crossings and the number of nestings. Klazar [12] further
studied the distribution of crossings and nestings over the set of matchings obtained
from a given matching by successfully adding edges.

The symmetry between crossings and nestings was extended by Kasraoui and Zeng
[11] to set partitions, and by Chen, Wu, and Yan [5] to linked set partitions. Poznanović
and Yan [15] determined the distribution of crossings and nestings over the set of
partitions which are identical to a given partition π when restricted to the last n
elements.

Many classical results on enumerative combinatorics can be put in the larger context
of counting submatrices in fillings of certain polyominoes. For example, words and
permutations can be represented as 01-fillings of rectangular boards, and general graphs
can be represented as N-fillings of arbitrary Ferrers shapes, which were studied by
Kratthenthaler [13] and de Mier [6, 7]. Other extensions include stack polyominoes [9]
and moon polyominoes [16, 10]. In particular, crossings and nestings in matchings and
set partitions correspond to northeast chains and southeast chains of length 2 in a filling
of polyominoes. The symmetry between crossings and nestings has been extended by
Kasraoui [10] to 01-fillings of moon polyominoes where either every row has at most
one 1 or every column has at most one 1. In both cases, the joint distribution of
the numbers of northeast and southeast chains can be expressed as a product of p, q-
Gaussian coefficients. Other known statistics on fillings of moon polyominoes are the
length of the longest northeast/southeast chains [2, 13, 16] and the major index [4].

The main objective of this paper is to present a stronger symmetry between the
numbers of northeast and southeast chains in the context of 01-fillings of moon polyomi-
noes. Given a bipartition of the rows (or columns) of a moon polyomino, we define four
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statistics by considering mixed sets of northeast and southeast chains according to the
bipartition. Let M be a 01-filling of a moon polyominoM with n rows and m columns.
These statistics are the top-mixed and the bottom-mixed statistics α(S;M), β(S;M)
with respect to a row-bipartition (S, S̄), and the left-mixed and the right-mixed s-
tatistics γ(T ;M), δ(T ;M) with respect to a column-bipartition (T, T̄ ). We show that
for any of these four statistics λ(A;M), namely, α(S;M), β(S;M) for S ⊆ [n] and
γ(T ;M), δ(T ;M) for T ⊆ [m], the joint distribution of the pair (λ(A;M), λ(Ā;M)) is
symmetric and independent of the subsets S, T . Consequently, we have the equidistri-
bution ∑

M

pλ(A;M)qλ(Ā;M) =
∑
M

pse(M)qne(M),

where M ranges over all 01-fillings ofM with the property that either every row has at
most one 1 or every column has at most one 1, and se(M) and ne(M) are the numbers
of southeast and northeast chains of M , respectively.

The paper is organized as follows. Section 2 contains necessary notation and the
statements of the main results. In section 3, we explain how our results specialize
to classical combinatorial objects, including permutations, words, matchings, and set
partitions. We present the proofs of the main theorems in section 4. In section 5,
we show by bijections that these new statistics are invariant under a permutation of
columns or rows on moon polyominoes.

2 Notation and the main results

A polyomino is a finite subset of Z2, where every element of Z2 is represented by a
square cell. The polyomino is convex if its intersection with any column or row is
connected. It is intersection-free if every two columns are comparable, i.e., the row-
coordinates of one column form a subset of those of the other column. Equivalently, it
is intersection-free if every two rows are comparable. A moon polyomino is a convex
and intersection-free polyomino.

Given a moon polyomino M, we assign 0 or 1 to each cell of M so that there
is at most one 1 in each row. Throughout this paper we will simply use the term
filling to denote such 01-fillings. We say that a cell is empty if it is assigned 0, and
it is a 1-cell otherwise. Assume M has n rows and m columns. We label the rows
R1, . . . , Rn from top to bottom, and the columns C1, . . . , Cm from left to right. Let
e = (ε1, . . . , εn) ∈ {0, 1}n and s = (s1, . . . , sm) ∈ Nm with

n∑
i=1

εi =
m∑
j=1

sj.

We denote by F(M, e, s) the set of fillings M of M such that the row Ri has exactly
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εi many 1’s, and the column Cj has exactly sj many 1’s, for 1 ≤ i ≤ n and 1 ≤ j ≤ m.
See Figure 1 for an illustration.

1

1
1

1
1

1

Figure 1: A filling M with e = (1, 1, 0, 1, 1, 1, 1) and s = (1, 1, 2, 1, 1, 0).

A northeast (resp., southeast) chain in a filling M ofM is a set of two 1-cells such
that one of them is strictly above (resp., below) and to the right of the other and the
smallest rectangle containing them is contained in M. Northeast (resp., southeast)
chains will be called NE (resp., SE) chains. The number of NE (resp., SE) chains of
M is denoted by ne(M) (resp., se(M)).

Let R be the set of rows of the moon polyomino M. For S ⊆ [n], let

R(S) =
⋃
i∈S

Ri.

We say a 1-cell is an S-cell if it lies in R(S). An NE chain is called a top S-NE chain
if its northeast 1-cell is an S-cell. Similarly, an SE chain is called a top S-SE chain if
its northwest 1-cell is an S-cell. In other words, an NE/SE chain is a top S-NE/SE
chain if the upper 1-cell of the chain is in R(S). Similarly, an NE/SE chain is a bottom
S-NE/SE chain if the lower 1-cell of the chain is in R(S).

Let S̄ = [n] \ S be the complement of S. Given a filling M ∈ F(M, e, s), we define
the top-mixed statistic α(S;M) and the bottom-mixed statistic β(S;M) with respect to
S as

α(S;M) = #{top S-NE chain of M}+ #{top S̄-SE chain of M},

β(S;M) = #{bottom S-NE chain of M}+ #{bottom S̄-SE chain of M}.

See Example 2.2 for some of these statistics on the filling M in Figure 1.
Let F t

S(p, q) and F b
S(p, q) be the bivariate generating functions for the pairs (α(S;M), α(S̄;M))

and (β(S;M), β(S̄;M)), respectively, namely,

F t
S(p, q) =

∑
M∈F(M,e,s)

pα(S;M)qα(S̄;M)

and
F b
S(p, q) =

∑
M∈F(M,e,s)

pβ(S;M)qβ(S̄;M).
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Note that

(α(∅;M), α([n];M)) = (β(∅;M), β([n];M)) = (se(M), ne(M)).

Our first result is the following property.

Theorem 2.1. F t
S(p, q) = F t

S′(p, q) for any two subsets S, S ′ of [n]. In other words,
the bivariate generating function F t

S(p, q) does not depend on S. Consequently,

F t
S(p, q) = F t

∅(p, q) =
∑

M∈F(M,e,s)

pse(M)qne(M)

is a symmetric function. The same statement holds for F b
S(p, q).

We can also define the mixed statistics with respect to a subset of columns. Let C
be the set of columns of M. For T ⊆ [m], let

C(T ) =
⋃
j∈T

Cj.

An NE chain is called a left T -NE chain if the southwest 1-cell of the chain lies in C(T ).
Similarly, an SE chain is called a left T -SE chain if the northwest 1-cell of the chain
lies in C(T ). In other words, an NE/SE chain is a left T -NE/SE chain if its left 1-cell
is in C(T ). Similarly, an NE/SE chain is a right T -NE/SE chain if its right 1-cell is in
C(T ).

Let T̄ = [m]\T be the complement of T . For any filling M of F(M, e, s), we define
the left-mixed statistic γ(T ;M) and the right-mixed statistic δ(T ;M) with respect to T
as

γ(T ;M) = #{left T -NE chain of M}+ #{left T̄ -SE chain of M},

δ(T ;M) = #{right T -NE chain of M}+ #{right T̄ -SE chain of M}.

Example 2.2. Let M be the filling in Figure 1, where ne(M) = 6 and se(M) = 1. Let
S = {2, 4}, i.e., R(S) contains the second and the fourth rows. Then

α(S;M) = 5, α(S̄;M) = 2, β(S;M) = 1, β(S̄;M) = 6.

Let T = {1, 3}, i.e., C(T ) contains the first and the third columns. Then

γ(T ;M) = 4, γ(T̄ ;M) = 3, δ(T ;M) = 2, δ(T̄ ;M) = 5.
LetGl

T (p, q) andGr
T (p, q) be the bivariate generating functions of the pairs (γ(T ;M), γ(T̄ ;M))

and (δ(T ;M), δ(T̄ ;M)), respectively, namely,

Gl
T (p, q) =

∑
M∈F(M,e,s)

pγ(T ;M)qγ(T̄ ;M)
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and
Gr
T (p, q) =

∑
M∈F(M,e,s)

pδ(T ;M)qδ(T̄ ;M).

Again note that

(γ(∅;M), γ([m];M)) = (δ(∅;M), δ([m];M)) = (se(M), ne(M)).

Our second result shows that the generating function Gl
T (p, q) possesses a property

similar to that of F t
S(p, q).

Theorem 2.3. Gl
T (p, q) = Gl

T ′(p, q) for any two subsets T, T ′ of [m]. In other words,
the bivariate generating function Gl

T (p, q) does not depend on T . Consequently,

Gl
T (p, q) = Gl

∅(p, q) =
∑

M∈F(M,e,s)

pse(M)qne(M)

is a symmetric function. The same statement holds for Gr
T (p, q).

We notice that the set F(M, e, s) appeared as N r(T,m, A) in Kasraoui [10], where
m is the column sum vector, and A is the set of empty rows, i.e., A = {i : εi = 0}.
Kasraoui also considered the set N c(T,n, B) of fillings whose row sum is an arbitrary
N-vector n under the condition that there is at most one 1 in each column and where
B is the set of empty columns. By a rotation of moon polyominoes, it is easily seen
that Theorems 2.1 and 2.3 also hold for the set N c(T,n, B), as well as for the set of
fillings such that there is at most one 1 in each row and in each column.

3 Mixed statistics in special shapes

In this section we show how Theorems 2.1 and 2.3 specialize to classical combinatorial
objects, including permutations, words, matchings, set partitions, and simple graphs.

We first consider the case of permutations and words. Fillings of an n × m rect-
angle M are in bijection with words of length n on [m]. More precisely, a word
w = w1w2 · · ·wn on [m] can be represented as a filling M in which the cell in row
n + 1 − i and column j is assigned the integer 1 if and only if wi = j. In the word
w1w2 · · ·wn, a pair (wi, wj) is an inversion if i < j and wi > wj; we say that it is
a co-inversion if i < j and wi < wj; see also [14]. Denote by inv(w) the number of
inversions of w, and by coinv(w) the number of co-inversions of w.

For S ⊆ [n], the statistics α(S;M) and β(S;M) become

α(S;w) = #{(wi, wj) : n+ 1− j ∈ S and (wi, wj) is a co-inversion}

+ #{(wi, wj) : n+ 1− j 6∈ S and (wi, wj) is an inversion}
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and

β(S;w) = #{(wi, wj) : n+ 1− i ∈ S and (wi, wj) is a co-inversion}

+ #{(wi, wj) : n+ 1− i 6∈ S and (wi, wj) is an inversion}.

For T ⊆ [m], the statistics γ(T ;M) and δ(T ;M) become

γ(T,w) = #{(wi, wj) : wi ∈ T and (wi, wj) is a co-inversion}

+ #{(wi, wj) : wj 6∈ T and (wi, wj) is an inversion}

and

δ(T,w) = #{(wi, wj) : wj ∈ T and (wi, wj) is a co-inversion}

+ #{(wi, wj) : wi 6∈ T and (wi, wj) is an inversion}.

Let W = {1s1 , 2s2 , . . . ,msm} be a multiset with s1 + · · · + sm = n. We adopt the
notation R(W ) for the set of permutations, also called rearrangements, of the elements
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in W . Let λ(A;w) denote any of the four statistics α(S;w), β(S;w), γ(T ;w), δ(T ;w).
Theorems 2.1 and 2.3 imply that the bivariate generating function for the pair of
statistics (λ(A;w), λ(Ā;w)) is symmetric and∑

w∈R(W )

pλ(A;w)qλ(Ā;w) =
∑

w∈R(W )

pinv(w)qcoinv(w) =

[
n

s1, . . . , sm

]
p,q

,(1)

where
[

n
s1,...,sm

]
p,q

is the p, q-Gaussian coefficient[
n

s1, . . . , sm

]
p,q

=
[n]p,q!

[s1]p,q! · · · [sm]p,q!
.

As usual, the p, q-integer [r]p,q is given by

[r]p,q =
pr − qr

p− q
= pr−1 + pr−2q + · · ·+ pqr−2 + qr−1,

and the p, q-factorial [r]p,q! is defined as [r]p,q! =
∏r

i=1[i]p,q.
We note that the symmetry of the distribution of (λ(A;w), λ(Ā;w)) can be easily

seen from the map w1 · · ·wn → (m+ 1−w1) · · · (m+ 1−wn) for α and β, and the map
w1 · · ·wn → wn · · ·w1 for γ and δ. Nevertheless, the generating function (1) seems to
be new. Chebikin [1] has considered the special case of α(S;w) when S is the set of
even integers and w ranges over all permutations of [n].

We now consider the case of matchings and set partitions. As can be seen in de Mier
[7] and Chen et al. [4], general fillings of Ferrers diagrams correspond to multigraphs,
which include matchings, set partitions, and linked set partitions. For simplicity, we
give a description only for matchings. Given a matching π on [2n], let l1 < l2 < · · · < ln
be the left-hand endpoints and let r1 < r2 < · · · < rn be the right-hand endpoints. It
determines a Ferrers diagram F whose rows are indexed by l1, . . . , ln and columns are
indexed by rn, . . . , r1, where a cell (lr, rk) is in the Ferrers diagram if and only if lr is
on the left of rk. The cell (lr, rk) is assigned the integer 1 if and only if (lr, rk) is an
arc of the matching π. See Figure 2 for an example.

l1 l2 r1 l3 l4 r2 r3 r4

←→
l4

l3

l2

l1

r4 r3 r2 r1

1

1

1

1

Figure 2: A matching and the corresponding filling of Ferrers diagram.

A subset of rows corresponds to a subset S of the left-hand endpoints {l1, . . . , ln}.
The statistic α(S;M) corresponds to the mixed crossing-nesting statistic with respect
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to the first left-hand endpoint. More precisely, for a crossing formed by two edges
(i1, j1) and (i2, j2) with i1 < i2 < j1 < j2, it is said to be an S-crossing if i1 ∈ S.
Similarly, a nesting formed by two edges (i1, j1) and (i2, j2) with i1 < i2 < j2 < j1 is
said to be an S-nesting if i1 ∈ S. Thus the statistic α(S;M) becomes

α(S; π) = #{S-crossing of π}+ #{S̄-nesting of π}.
Theorem 2.1 asserts that

∑
π p

α(S;π)qα(S̄;π) is symmetric and independent of S, where
π ranges over Pn(A,B), the set of matchings with a given set of left-hand endpoints A
and a given set of right-hand endpoints B. In particular, for each ri, let

hi = #{cell in the column indexed by ri} − (i− 1).

By the generating function for the numbers of crossings and nestings [3, 11], we have∑
π∈Pn(A,B)

pα(S;π)qα(S̄;π) =
n∏
i=1

[hi]p,q(2)

for any S ⊆ {l1, . . . , ln}. It is worth noting some immediate consequences of (2).
For example, for any nonempty set Pn(A,B), there is exactly one matching π such
that α(S; π) = 0. It is not hard to construct such a matching. Hence the number
of matchings on [2n] with α(S; π) = 0 is given by the nth Catalan number. Similar
statements hold when one considers the mixed crossing-nesting statistics with respect
to the second left-hand endpoint, the first right-hand endpoint, and the second right-
hand endpoint, respectively.

All the above results can be extended to set partitions [11] and linked set partitions
[5], or, more generally, to simple graphs for which the left-degree of every vertex is at
most 1, or the right-degree of every vertex is at most 1; see de Mier [7]. Another way
to see this is to associate a simple graph with a filling of the triangular Ferrers diagram
∆n = (n− 1, n− 2, . . . , 1); see, for example, [13, 7].

4 Proof of the main results

It is sufficient to prove our results for α(S;M) and γ(T ;M) only, since conclusions for
β(S;M) and δ(T ;M) can be obtained by reflecting the moon polyomino with respect
to a horizontal line or a vertical line.

In section 4.1, we recall Kasraoui’s bijection Ψ from F(M, e, s) to sequences of com-
positions [10]. Kasraoui’s construction is stated for the set N c(T,n, B). We shall give a
description to fit our notation. The detailed justification of the bijection Ψ can be found
in [10], and hence is omitted. This bijection will be used in the proof of Lemma 4.6,
which states that the pair of the top-mixed statistics (α({1};M), α({1};M)) is equidis-
tributed with (se(M), ne(M)). Theorem 2.1 follows from an iteration of Lemma 4.6.
In section 4.3 we provide two proofs of Theorem 2.3. Again the crucial step is the
observation that (γ({1};M), γ({1};M)) has the same distribution as (se(M), ne(M)).
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4.1 Kasraoui’s bijection Ψ

If the columns of M are C1, . . . , Cm from left to right, it is clear that the sequence of
their lengths is unimodal and there exists a unique k such that

|C1| ≤ · · · ≤ |Ck−1| < |Ck| ≥ |Ck+1| ≥ · · · ≥ |Cm|,

where |Ci| is the length of the column Ci. The left part of M, denoted L(M), is the
set of columns Ci’s with 1 ≤ i ≤ k − 1, and the right part of M, denoted R(M), is
the set of columns Ci’s with k ≤ i ≤ m. Note that the columns of maximal length in
M belong to R(M).

We order the columns C1, . . . , Cm by a total order ≺ as follows: Ci ≺ Cj if and
only if

• |Ci| < |Cj| or

• |Ci| = |Cj|, Ci ∈ L(M), and Cj ∈ R(M), or

• |Ci| = |Cj|, Ci, Cj ∈ L(M), and Ci is on the left of Cj, or

• |Ci| = |Cj|, Ci, Cj ∈ R(M), and Ci is on the right of Cj.

For every column Ci ∈ L(M), we define the rectangle M(Ci) to be the largest
rectangle that contains Ci as the leftmost column. For Ci ∈ R(M), the rectangle
M(Ci) is taken to be the largest rectangle that contains Ci as the rightmost column
and does not contain any column Cj ∈ L(M) such that Cj ≺ Ci.

Given M ∈ F(M, e, s), we define a coloring of M by the following steps.
The coloring of the filling M .

1. Color the cells of empty rows.

2. For each Ci ∈ L(M), color the cells which are contained in the rectangleM(Ci)
and on the right of any 1-cell in Ci.

3. For each Ci ∈ R(M), color the cells which are contained in the rectangleM(Ci)
and on the left of any 1-cell in Ci.

Given M with the coloring, let ce be a cell of M. If ce is a 1-cell, we denote by
auc(ce;M) (resp., buc(ce;M)) the number of uncolored empty cells in the same column
as ce and above (resp., below) ce. If ce is empty, we set auc(ce;M) = buc(ce;M) = 0.

Proposition 4.1. Let M ∈ F(M, e, s) and let ce be a 1-cell of Ci.

1. If Ci ∈ L(M), then auc(ce;M) (resp., buc(ce;M)) is equal to the number of
NE (resp., SE ) chains contained in the rectangle M(Ci) whose southwest (resp.,
northwest) 1-cell is ce.
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2. If Ci ∈ R(M), then auc(ce;M) (resp., buc(ce;M)) is equal to the number of
SE (resp., NE ) chains contained in the rectangle M(Ci) whose southeast (resp.,
northeast) 1-cell is ce.

Example 4.2. Let M be the 01-filling in Figure 1, where L(M) = {C1} and R(M) =
{C2, . . . , C6}. Let ce be the 1-cell in the first column, and ce′ the 1-cell in the fifth
column. Then auc(ce;M) = 1, buc(ce;M) = 1, auc(ce′;M) = 0, and buc(ce′;M) = 2.
See Figure 3.

1

1
1

1
1

1

Figure 3: The statistics auc and buc for cells in a 01-filling. Colored cells are marked
with diagonal lines.

The following theorem can be deduced from Proposition 4.1.

Theorem 4.3.

ne(M) =
∑

ce∈L(M)

auc(ce;M) +
∑

ce∈R(M)

buc(ce;M),

se(M) =
∑

ce∈L(M)

buc(ce;M) +
∑

ce∈R(M)

auc(ce;M).

For M ∈ F(M, e, s), let ai be the number of empty rows (i.e., {Ri : εi = 0}) that
intersect column Ci. Suppose that Ci1 ≺ Ci2 ≺ · · · ≺ Cim . For j = 1, . . . ,m, we define

hij = |Cij | − aij − (si1 + si2 + · · ·+ sij−1
).(3)

Note that the numbers hi have the following interpretation. If one puts 1-cells in
the columns of M from the smallest to the largest under the order ≺, then hij is
the number of available cells in the jth column to be filled. For positive integers n
and k, denote by Ck(n) the set of compositions of n into k nonnegative parts, that
is, Ck(n) = {(λ1, λ2, . . . , λk) ∈ Nk :

∑k
i=1 λi = n}. The bijection Ψ is constructed as

follows.
The bijection Ψ : F(M, e, s) −→ Cs1+1(h1−s1)×Cs2+1(h2−s2)×· · ·×Csm+1(hm−sm).

For each M ∈ F(M, e, s) with the coloring, Ψ(M) is a sequence of compositions
(c(1), c(2), . . . , c(m)), where the following hold:
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• c(i) = (0) if si = 0; otherwise

• c(i) = (c
(i)
1 , c

(i)
2 , . . . , c

(i)
si+1), where

– c
(i)
1 is the number of uncolored cells above the first 1-cell in column Ci;

– c
(i)
k is the number of uncolored cells between the (k−1)st and the kth 1-cells

in column Ci for 2 ≤ k ≤ si;

– c
(i)
si+1 is the number of uncolored cells below the last 1-cell in column Ci.

Let c = Ψ(M) = (c(1), c(2), . . . , c(m)), and let ce be the kth 1-cell in column Ci. It
follows from the bijection Ψ that

auc(ce;M) = c
(i)
1 + c

(i)
2 + · · ·+ c

(i)
k ,

buc(ce;M) = c
(i)
k+1 + c

(i)
k+2 + · · ·+ c

(i)
si+1 = hi − si − (c

(i)
1 + c

(i)
2 + · · ·+ c

(i)
k ).

Now Theorem 4.3 can be rewritten as follows.

Theorem 4.4. Let M ∈ F(M, e, s) and c = Ψ(M) = (c(1), c(2), . . . , c(m)). Then

ne(M) =
∑

Ci∈L(M)

si∑
k=1

(c
(i)
1 + c

(i)
2 + · · ·+ c

(i)
k ) +

∑
Cj∈R(M)

sj∑
k=1

(hj−sj− c(j)
1 − c

(j)
2 −· · ·− c

(j)
k ),

se(M) =
∑

Ci∈L(M)

si∑
k=1

(hi− si− c(i)
1 − c

(i)
2 −· · ·− c

(i)
k ) +

∑
Cj∈R(M)

sj∑
k=1

(c
(j)
1 + c

(j)
2 + · · ·+ c

(j)
k ).

Summing over the sequences of compositions yields the symmetric generating func-
tion.

Theorem 4.5 (Kasraoui).

∑
M∈F(M,e,s)

pne(M)qse(M) =
∑

M∈F(M,e,s)

pse(M)qne(M) =
m∏
i=1

[
hi
si

]
p,q

.

4.2 Proof of Theorem 2.1

To prove Theorem 2.1 for the top-mixed statistic α(S;M), we first consider the special
case when R(S) contains the first row only.

Lemma 4.6. For S = {1}, we have

F t
{1}(p, q) = F t

∅(p, q) =
∑

M∈F(M,e,s)

pse(M)qne(M).
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Proof. We assume that the first row is nonempty. Otherwise the identity is obvious.
Given a filling M ∈ F(M, e, s), assume that the unique 1-cell of the first row lies in
column Ct. Let the upper polyomino Mu be the union of the rows that intersect Ct,
and let the lower polyomino Md be the complement of Mu, i.e., Md =M\Mu. We
aim to construct a bijection φα : F(M, e, s)→ F(M, e, s) such that for any filling M ,

(α({1};M), α({1};M)) = (se(φα(M)), ne(φα(M))),

and φα(M) is identical to M on Md.
Let Mu = M ∩Mu and Md = M ∩Md. Let s′i be the number of 1-cells of M in the

column Ci∩Mu, and let s′ = (s′1, . . . , s
′
m). Let e′ = (ε1, . . . , εr), where r is the number

of rows in Mu. We shall define φα on F(Mu, e
′, s′) such that φα(Mu) ∈ F(Mu, e

′, s′)
and

(α({1};Mu), α({1};Mu)) = (se(φα(Mu)), ne(φα(Mu))).

Let C ′i = Ci ∩ Mu. Suppose that in M the columns intersecting the first row
are Ca, . . . , Ct, . . . , Cb from left to right. Then Ct = C ′t, and in Mu the columns
C ′a, . . . , C

′
t, . . . , C

′
b intersect the first row. Assume that among them the ones with

the same length as C ′t are C ′u, . . . , C
′
t, . . . , C

′
v from left to right. Clearly, the columns

C ′u, . . . , C
′
t, . . . , C

′
v are those with maximal length and belong to R(Mu). Note that in

Mu, the number of top {1}-NE chains is
∑

a≤i<t s
′
i, while the number of top {1}-SE

chains is
∑

t<i≤b s
′
i. Let h′i be given as in (3) for F(Mu, e

′, s′). Letting c = Ψ(Mu) =

(c(1), c(2), . . . , c(m)), from Theorem 4.4 we see that

α({1};Mu) =
∑
a≤i<t

s′i +
∑

C′i∈L(Mu)

s′i∑
k=1

(h′i − s′i − c
(i)
1 − c

(i)
2 − · · · − c

(i)
k )

+
∑

C′j∈R(Mu)

s′j∑
k=1

(c
(j)
1 + c

(j)
2 + · · ·+ c

(j)
k )−

∑
t<i≤b

s′i

=
∑
a≤i<u

s′i + (h′t − s′t) +
∑

C′i∈L(Mu)

s′i∑
k=1

(h′i − s′i − c
(i)
1 − c

(i)
2 − · · · − c

(i)
k )

+
∑

C′j∈R(Mu)

s′j∑
k=1

(c
(j)
1 + c

(j)
2 + · · ·+ c

(j)
k )−

∑
t<i≤b

s′i.(4)

The second equation holds since C ′t ≺ C ′t−1 ≺ · · · ≺ C ′u are the largest t−u+1 columns
in R(Mu) under the order ≺. By definition h′t is the number of available rows when
all the smaller columns of Mu have been filled. Those available rows will be filled by

13



the 1’s in the columns C ′t, . . . , C
′
u. Hence h′t = s′t + · · ·+ s′u. Similarly, we have

α({1};Mu) =
∑
t<i≤b

s′i +
∑

C′i∈L(Mu)

s′i∑
k=1

(c
(i)
1 + c

(i)
2 + · · ·+ c

(i)
k )

+
∑

C′j∈R(Mu)

s′j∑
k=1

(h′j − s′j − c
(j)
1 − c

(j)
2 − · · · − c

(j)
k )−

∑
a≤i<t

s′i

=
∑
t<i≤b

s′i +
∑

C′i∈L(Mu)

s′i∑
k=1

(c
(i)
1 + c

(i)
2 + · · ·+ c

(i)
k )

+
∑

C′j∈R(Mu)

s′j∑
k=1

(h′j − s′j − c
(j)
1 − c

(j)
2 − · · · − c

(j)
k )

−
∑
a≤i<u

s′i − (h′t − s′t).(5)

The fact that the 1-cell of the first row lies in the column C ′t implies that c
(t)
1 = 0,

and c
(i)
1 > 0 for a ≤ i < u or t < i ≤ b. We define the filling φα(Mu) by setting

φα(Mu) = Ψ−1(c̃), where c̃ is obtained from c as follows:
c̃(i) = (c

(i)
1 − 1, c

(i)
2 , . . . , c

(i)
si , c

(i)
si+1 + 1) if a ≤ i < u or t < i ≤ b, and s′i 6= 0,

c̃(t) = (c
(t)
2 , c

(t)
3 , . . . , c

(t)
st+1, c

(t)
1 ) if i = t,

c̃(i) = c(i) for any other i.

Comparing the formulas (4) and (5) with Theorem 4.4 for c̃, it is easily verified
that

(α({1};Mu), α({1};Mu)) = (se(φα(Mu)), ne(φα(Mu))).

Now φα(M) is obtained from M by replacing Mu with φα(Mu).
Claim. (α({1};M), α({1};M)) = (se(φα(M)), ne(φα(M))) for any M ∈ F(M, e, s).
This is true because (1) M has the same number of top {1}-NE/SE chains as Mu,

since every top {1}-NE/SE chain of M must appear in Mu; (2) Md appears in both M
and φα(M); (3) if (ce, ce′) is an NE chain or an SE chain with ce ∈Mu and ce′ ∈Md,
by the intersection-free property of M, both ce and ce′ are in columns {Ca, . . . , Cb}.
For any fixed ce′ ∈Md, the number of NE (resp., SE) chains formed by ce′ and 1-cells
ce in the column Cj∩Mu is unchanged under the map φα since φα preserves the column
sum and row sum of Mu.

To show that φ is a bijection on F(M, e, s), it is enough to explain how to determine
from φα(M) column Ct, and hence the upper polyominoMu. Then the correspondence
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between c and c̃ becomes obvious. To this end, we shall use the map Ψ defined in
section 4.1. If the columns intersecting the first row are Ca, . . . , Cb in M, then Ct
is the smallest column in {Ca, . . . , Cb} under the order ≺ with the property that the

last entry c
(t)
st+1 is 0 in the corresponding composition c(t). The rest of the proof is

straightforward.

Proposition 4.7. Assume S = {r1, r2, . . . , rs} ⊆ [n] with r1 < r2 < · · · < rs. Let
S ′ = {r1, r2, . . . , rs−1}. Then F t

S(p, q) = F t
S′(p, q).

Proof. Let X = {Ri : 1 ≤ i < rs} be the set of rows above the row Rrs , and let Y
be the set of remaining rows. Given a filling M ∈ F(M, e, s), let T (M) be the set of
fillings M ′ ∈ F(M, e, s) that are identical to M in the rows of X. Construct a bijection
θrs : T (M)→ T (M) by setting θrs(M) to be the filling obtained from M by replacing
M ∩ Y with φα(M ∩ Y ).

We proceed to show that

(α(S;M), α(S̄;M)) = (α(S ′; θrs(M)), α(S ′; θrs(M))).(6)

There are three cases.

1. An NE or an SE chain consisting of two 1-cells in X contributes equally to both
pairs of statistics.

2. By Lemma 4.6, the set of NE chains and SE chains consisting of two cells in Y
contributes equally to both pairs of statistics.

3. For a 1-cell ce in X, assume ce is in row Ru and column Ct. Let T = {Ca, . . . , Cb}
be the set of columns intersecting both rows Rrs and Ru, and let Rp (p ≥ rs) be
the lowest row that intersects Ct. If ce forms an NE chain with a cell ce′ in Y ,
then ce′ is in a row on or above Rp, and in a column in {Ca, . . . , Ct−1}.
It follows that the number of NE chains of the form (ce, ce′) for a fixed 1-cell
ce ∈ X equals the number of 1-cells in the area {(Ri, Cj) : rs ≤ i ≤ p, a ≤ j < t};
see Figure 4. This number is unchanged under the map φα, as φα preserves
the column sum and the row sum, and hence the number of 1’s in columns
Ca, . . . , Ct−1 and the number of 1’s in rows {Ri : i > p}. Similarly, the number
of SE chains (ce, ce′) with ce ∈ X and ce′ ∈ Y is unchanged under the map φα.
Thus NE and SE chains formed by one X-cell and one Y -cell contribute equally
to the two pairs of statistics as well.

Thus (6) is proved by combining the above three cases.
Proof of Theorem 2.1. Assume S = {r1, r2, . . . , rs} ⊆ R with r1 < r2 < · · · < rs.

Let Θα = θr1 ◦ θr2 ◦ · · · ◦ θrs , where θr is defined in the proof of Proposition 4.7. Then
Θα is a bijection on F(M, e, s) with the property that

(α(S;M), α(S̄;M)) = (se(Θα(M)), ne(Θα(M))).

The symmetry of F t
S(p, q) follows from Theorem 4.5.
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ce

ce’

6

Ca
6

Ct
6

Cb

-Rrs

-Rp

-Ru

X

Y

Figure 4: NE chains formed by the cell ce ∈ X- and Y -cells.

4.3 Proof of Theorem 2.3

Theorem 2.3 is concerned with the left-mixed statistic γ(T ;M). The proof is similar to
that of Theorem 2.1. The key idea amounts to the observation that (γ({1};M), γ({1};M))
is equidistributed with (se(M), ne(M)). We provide two proofs of this fact: one is based
on generating functions, and the other is bijective.

Lemma 4.8. For T = {1}, we have

Gl
{1}(p, q) = Gl

∅(p, q) =
m∏
i=1

[
hi
si

]
p,q

.

First proof of Lemma 4.8. We conduct induction on the number of columns of M.
The statement is trivial if M has only one column.

Assume that Lemma 4.8 holds for 01-fillings on any moon polyominoes with less
than m columns. Suppose that M has m columns. Consider the minimal column C
under the order ≺. There are two cases.

1. C = C1 is the leftmost column ofM. In this case we employ the bijection Ψ. For
any fillingM with Ψ(M) = (c(1), c(2), . . . , c(m)), let τ(M) = Ψ−1(c(1),r, c(2), . . . , c(m)),
where

c(1),r = (c
(1)
s1+1, . . . , c

(1)
2 , c

(1)
1 ) if c(1) = (c

(1)
1 , c

(1)
2 , . . . , c

(1)
s1+1).

It is readily checked that (γ({1};M), γ({1};M)) = (se(τ(M)), ne(τ(M))).

2. C = Cm is the rightmost column of M. We first prove the case for rectangular
shapes. Assume M is a rectangle with n nonempty rows. A filling M of M
can be read as a word w = w1w2 · · ·wn, where wi = j if the only 1-cell in
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the (n + 1 − i)th nonempty row appears in the jth column. It is clear that
se(M) = inv(w1w2 · · ·wn) and ne(M) = coinv(w1w2 · · ·wn). In addition, fillings
with a given column sum s = (s1, . . . , sm) correspond to words on the multiset
{1s1 , . . . ,msm}. Therefore∑

M∈F(M,e,s)

pse(M)qne(M) =

[
n

s1, . . . , sm

]
p,q

.(7)

Observe that

γ({1};M) = # {(wi, wj) | wi = 1 < wj and i < j}
+ # {(wi, wj) | i < j and wi > wj 6= 1}.

Let ε(w1w2 · · ·wn) = ε(w1)ε(w2) · · · ε(wn), where

ε(wi) =

{
m+ 1 if wi = 1,

wi otherwise.

Then γ({1};M) = inv(ε(w1w2 · · ·wn)). Similarly, we have

γ({1};M) = coinv(ε(w1w2 · · ·wn)).

When M ranges over F(M, e, s), the word ε(w1w2 · · ·wn) ranges over all rear-
rangements of the multiset W = {(m+ 1)s1 , 2s2 , . . . ,msm}. Hence∑

M∈F(M,e,s)

pγ({1};M)qγ({1};M) =
∑

w∈R(W )

pinv(w)qcoinv(w)

=

[
n

s1, . . . , sm

]
p,q

.(8)

Comparing (7) and (8), we complete the proof for a rectangular shape M.

Now we deal with the case of a general shape M. Let M(C) be the largest
rectangle that contains C. Let M1 = M \ C and M1(C) = M(C) \ C. By
the inductive hypothesis, (γ({1};M), γ({1};M)) has the same distribution as
(se(M), ne(M)) over the set of fillings in F(M1, e

′, s − {sm}), where e′ is the
row-vector when one removes the rows with a 1-cell in column C. We analyze
the contribution when one adds the last column C with sm many 1-cells.

Given a filling M on M1, let S(M) be the set of all fillings that have the same
1-cells in rows other than those in M1(C). For any N ∈ S(M), let N(C) be the
restriction of N on M1(C); then the values

γ({1};N)− γ({1};N(C)) and γ({1};N)− γ({1};N(C))
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are constants over S(M), which will not change when the last column C is added.
Note thatM1(C) is a rectangular shape. Hence N(C) can be identified as a word
of length n on {1s′1 , 2s′2 , . . . , (m − 1)s

′
m−1}, where n is the number of nonempty

rows inM1(C), and s′i is the number of 1’s of M in Ci∩M(C). By the argument
for a rectangular shape, we find that∑

N∈S(M)

pγ({1};N(C))qγ({1};N(C)) =

[
n

s′1, . . . , s
′
m−1

]
p,q

.

Adding the last column C with sm 1-cells is equivalent to inserting sm many
m’s to a word on {1s′1 , 2s′2 , . . . , (m − 1)s

′
m−1}. Again using the transformation

ε(w1w2 · · ·wn+sm) = ε(w1)ε(w2) · · · ε(wn+sm) and assumingW ′ = {(m+1)s
′
1 , 2s

′
2 , . . . , (m−

1)s
′
m−1 ,msm}, we have∑

M∈F(M(C),e1,s′∪{sm})

pγ({1};M)qγ({1};M) =
∑

w∈R(W ′)

pinv(w)qcoinv(w)

=

[
n+ sm

s′1, . . . , s
′
m−1, sm

]
p,q

,

where e1 is the restriction of e on the rows in M(C). Thus we deduce that the
contribution of the last column C over the set S(M) is given by[

n+ sm
s′1, . . . , s

′
m−1, sm

]
p,q

/[ n

s′1, . . . , s
′
m−1

]
p,q

=

[
n+ sm
sm

]
p,q

,

which is independent of s′1, . . . , s
′
m−1.

Summing over all distinct sets of the form S(M), we conclude that adding the
last column C contributes a factor of

[
n+sm
sm

]
p,q

to Gl
{1}(p, q). It follows from (3)

that n+ sm = hm. Hence an inductive argument yields

Gl
{1}(p, q) =

m∏
i=1

[
hi
si

]
p,q

= Gl
∅(p, q).

The second proof of Lemma 4.8 is a bijection, which is built on an involution ρ on
the fillings of a rectangular shape M.

An involution ρ on rectangular shapes. Let M be an n ×m rectangle. We order
the columns of M from left to right, i.e., C1 ≺′ · · · ≺′ Cm, and set L(M) = M. For
any filling M , give it the coloring as described in section 4.1, and apply the bijection
Ψ from F(M, e, s) to Cs1+1(h1 − s1) × · · · × Csm+1(hm − sm). For any filling M with
Ψ(M) = (c(1), c(2), . . . , c(m)) under the order ≺′, let ρ(M) be the filling whose associated
sequence of compositions is (c(1),r, c(2), . . . , c(m)), again under the order ≺′, where

c(1),r = (c
(1)
s1+1, . . . , c

(1)
2 , c

(1)
1 ) if c(1) = (c

(1)
1 , c

(1)
2 , . . . , c

(1)
s1+1).
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Then it is easy to verify that ρ(ρ(M)) = M and

(γ({1};M), γ({1};M)) = (se(ρ(M)), ne(ρ(M))).

Second proof of Lemma 4.8. Given a general moon polyominoM, assume that the
rows intersecting the first column are {Ra, . . . , Rb}. LetMc be the union Ra∪· · ·∪Rb.
Clearly, for any M ∈ F(M, e, s), a left {1}-NE (SE) chain consists of two 1-cells in
Mc. Let C ′i = Ci ∩Mc be the restriction of the column Ci onMc. Then C ′1 = C1 and
|C ′1| ≥ |C ′2| ≥ · · · ≥ |C ′m|.

Suppose that

|C ′1| = |C ′2| = · · · = |C ′j1| > |C
′
j1+1| = |C ′j1+2| = · · · = |C ′j2| > |C

′
j2+1| · · ·

· · · = |C ′jk−1
| > |C ′jk−1+1| = |C ′jk−1+2| = · · · = |C ′jk | = |C

′
m|.

Let Bi be the greatest rectangle contained in Mc whose rightmost column is C ′ji (1 ≤
i ≤ k), and B′i = Bi ∩Bi+1 (1 ≤ i ≤ k − 1).

We define φγ : F(M, e, s) → F(M, e, s) by constructing a sequence of fillings
(M,Mk, . . . ,M1) starting from M .

The map φγ : F(M, e, s)→ F(M, e, s).
Let M ∈ F(M, e, s).

1. The filling Mk is obtained from M by replacing M ∩Bk with ρ(M ∩Bk).

2. For i from k − 1 to 1:

(a) Define a filling Ni on B′i by setting Ni = ρ(Mi+1 ∩B′i). Let the filling M ′
i be

obtained from Mi+1 by replacing Mi+1 ∩B′i with Ni.

(b) The filling Mi is obtained from M ′
i by replacing M ′

i ∩Bi with ρ(M ′
i ∩Bi).

3. Set φγ(M) = M1.

See Example 4.9 for an illustration.
Claim. (γ({1};M), γ({1};M)) = (se(φγ(M)), ne(φγ(M))).
We are able to keep track of the statistic γ({1};M) in the above algorithm. In

step 1, by the definition of ρ we have

γ({1};M) = #{left {1}-NE chain of M}+ #{left {1}-SE chain of M}
= #{left {1}-NE chain of Mk}+ #{left {1}-SE chain of Mk}
−#{left {1}-NE chain of Mk in Bk}
+#{left {1}-SE chain of Mk in Bk}.

Let Bi = Bi ∪ · · · ∪Bk. For i from k − 1 to 1, step 2(a) implies that for the filling M ′
i ,

γ({1};M) = #{left {1}-NE chain of M ′
i}+ #{left {1}-SE chain of M ′

i}
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−#{left {1}-NE chain of M ′
i in Bi+1}

+#{left {1}-SE chain of M ′
i in Bi+1}

+ #{left {1}-NE chain of M ′
i in B′i}

−#{left {1}-SE chain of M ′
i in B′i}.

Then step 2(b) implies that in the filling Mi,

γ({1};M) = #{left {1}-NE chain of Mi}+ #{left {1}-SE chain of Mi}
−#{left {1}-NE chain of Mi in Bi}
+#{left {1}-SE chain of Mi in Bi}.

Since all the {1}-NE (SE) chains of Mi are in Mc = B1 ∪ · · · ∪ Bk = B1, when i = 1
we have γ({1};M) = se(M1) = se(φγ(M)). Similarly, γ({1};M) = ne(φγ(M)).

Example 4.9. Figure 5 shows an example of the map φγ applied to a filling M . The
filling M is given in the figure on the left, where |C1| = |C ′2| = |C ′3| > |C ′4| = |C ′5| > |C ′6|.
Hence k = 3, j1 = 3, j2 = 5, and j3 = 6. It is easy to see that M = M3 = M ′

2. Figure
5 shows how to get M2 and M ′

1. In this example, it happens that M ′
1 = M1.

1

1

1

1

1

1
1

M = M3 = M ′
2

(boxed part is B2)

-ρ
to B2

1

1
1
1

1

1
1

M2

(boxed part is B′
1)

-ρ
to B′

1

1

1
1

1
1

1
1

M ′
1 = M1

(boxed part is B1)

Figure 5: The map φγ.

Proposition 4.10. Assume T = {c1, c2, . . . , ct} ⊆ [m] with c1 < c2 < · · · < ct. Let
T ′ = {c1, c2, . . . , ct−1}. Then Gl

T (p, q) = Gl
T ′(p, q).

Proof. Like Lemma 4.8, Proposition 4.10 can be proved either by analyzing the
generating functions, or by a bijection built on the map φγ. Here we give the details
of the bijection which will be used in section 5.

Let U = {Ci : 1 ≤ j < ct} be the set of columns on the left of column Cct , and
let V be the set of remaining columns. For any M ∈ F(M, e, s), let ξct(M) be the
filling obtained from M by replacing M ∩ V with φγ(M ∩ V ). Then ξct is a bijection
on F(M, e, s) such that

(γ(T ;M), γ(T̄ ;M)) = (γ(T ′; ξct(M)), γ(T̄ ′; ξct(M))).(9)

The proof is similar to that of Proposition 4.7 and is omitted.
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Proof of Theorem 2.3. Assume T = {c1, c2, . . . , ct} ⊆ C with c1 < c2 < · · · < ct. Let
Σγ = ξc1 ◦ ξc2 ◦ · · · ◦ ξct , where ξc is defined in the proof of Proposition 4.10. Then Σγ

is a bijection on F(M, e, s) with the property that

(γ(T ;M), γ(T̄ ;M)) = (se(Σγ(M)), ne(Σγ(M))).

5 Invariance properties

The bivariate generating function of (ne, se) (cf. Theorem 4.5) implies that the mixed
statistics are invariant under any permutation of rows and/or columns. To be more
specific, letM be a moon polyomino. For any moon polyominoM′ obtained fromM
by permuting the rows and/or the columns of M, we have

#{M ∈ F(M, e, s) : λ(A;M) = i, λ(Ā;M) = j}

= #{M ′ ∈ F(M′, e′, s′) : λ(A;M ′) = i, λ(Ā;M ′) = j}

for any nonnegative integers i and j, where e′ (resp., s′) is the sequence obtained from e
(resp., s) in the same way as the rows (resp., columns) ofM′ are obtained from the rows
(resp., columns) ofM, and λ(A;M) is any of the four statistics α(S;M), β(S;M), γ(T ;M),
and δ(T ;M). In this section we present bijective proofs of such phenomena.

Let M be a general moon polyomino. Let Nl be the unique left-aligned moon
polyomino whose sequence of row lengths is equal to |R1|, . . . , |Rn| from top to bottom.
In other words, Nl is the left-aligned polyomino obtained by rearranging the columns
ofM by length in weakly decreasing order from left to right. We shall use an algorithm
developed in [4] that rearranges the columns of M to generate Nl.

The algorithm α for rearranging M.

1. Set M′ =M.

2. If M′ is left aligned, go to step 4.

3. If M′ is not left-aligned, consider the largest rectangle B completely contained
in M′ that contains C1, the leftmost column of M′. Update M′ by setting M′

to be the polyomino obtained by moving the leftmost column of B to the right
end. Go to step 2.

4. Set Nl =M′.

Figure 6 is an illustration of the algorithm α.
Based on the algorithm α, Chen et al. constructed a bijection

g = gM : F(M, e, s)→ F(Nl, e, s′)
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Figure 6: The algorithm α.

such that (se(M), ne(M)) = (se(g(M)), ne(g(M))); see [4, section 5.3.2].
Combining gM with the bijection Θα constructed in the proof of Theorem 2.1, we

are led to the following invariance property.

Theorem 5.1. Let M be a moon polyomino. For any moon polyomino M′ obtained
from M by permuting the columns of M, the map

Φα = Θ−1
α ◦ g−1

M′ ◦ gM ◦Θα : F(M, e, s)→ F(M′, e, s′)(10)

is a bijection with the property that

(α(S;M), α(S̄;M)) = (α(S;M ′), α(S̄;M ′)).
Similarly, let Nt be the top aligned polyomino obtained from M by first rotating

90 degrees counterclockwise, followed by applying the algorithm α, and finally rotating
90 degrees clockwise. Such operations enable us to establish a bijection h = hM
from F(M, e, s) to F(Nt, e′, s) that keeps the statistics (se, ne). The map hM can be
described by using the map gM under the algorithm α with a rotation of 90 degrees
clockwise. More precisely, the rotated algorithm α′ is the same as the algorithm α,
except that the term left-aligned is replaced with the term top-aligned, C1 is replaced
with R1, and left and right are replaced with top and bottom, respectively. In fact the
map hM is much simpler than gM since every row in the filling has at most one 1-cell.
We state it in full detail for completeness.

Theorem 5.2. There is a bijection hM : F(M, e, s)→ F(Nt, e′, s) such that (se(M), ne(M)) =
(se(h(M)), ne(h(M))).

Proof. Let M ∈ F(M, e, s). To obtain hM(M), we perform the rotated algorithm
α′ to transform the shape M into Nt and change the filling when we move rows down
in step 3 so that the number of 1’s in each row and column is preserved.

Let N be the filling on the rectangular B in step 3 of the rotated algorithm α′ that
contains row R1 of the current filling. Let B′ be the rectangle obtained by moving row
R1 from the top to the bottom of B. Fill it to obtain a filling N ′ as follows:

1. If R1 is empty, then N ′ is obtained from N \ {R1} by adding an empty row at
the bottom.
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2. If R1 has a 1-cell, then the following hold:

(a) The rows that are empty in B remain empty in B′. Shade these rows in both
B and B′.

(b) The filling on the rectangle formed by the unshaded rows of B′ is the same
as N restricted to the rectangle obtained from the unshaded rows of B.

The filling outside B remains unchanged.
Applying the rotated algorithm α′ with the above operations on filling M , we

finally obtain the filling hM(M). The proof of [4, Proposition 5.10] ensures that hM is
a bijection.

Combining the bijection Θα with hM, we arrive at the second invariance property.

Theorem 5.3. Let M be a moon polyomino. For any moon polyomino M′ obtained
from M by permuting the rows of M, the map

Λα = Θ−1
α ◦ h−1

M′ ◦ hM ◦Θα : F(M, e, s)→ F(M′, e′, s)(11)

is a bijection with the property that

(α(S;M), α(S̄;M)) = (α(S;M ′), α(S̄;M ′)).
It is evident that replacing Θα with the map Σγ defined in the proof of Theorem 2.3

in (10) and (11) leads to bijections preserving the statistics (γ(T ;M),
γ(T̄ ;M)) under any permutation of columns or rows. Similar results hold for the
statistics β(S;M) and δ(T ;M) by reflecting the moon polyomino with respect to a
horizontal or a vertical line.
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