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Abstract. In this paper, we extend the notion of labeled partitions with ordinary permu-
tations to colored permutations. We use this structure to derive the generating function
of the fmaj, indices of colored permutations. We further give a combinatorial treatment
of a relation on the g-derangement numbers with respect to colored permutations. Based
on labeled partitions, we provide an involution that implies the generating function formula
due to Gessel and Simon for signed g-counting of the major indices. This involution can be
extended to signed permutations. This gives a combinatorial interpretation of a formula of
Adin, Gessel and Roichman.
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1 Introduction

In this paper, we introduce the notion of labeled partitions with colored permutations and
use this structure to study the fmaj index and the ¢-derangement numbers. To be more
specific, we will be concerned with the wreath product S¥ = Cy.1 S, of the symmetric group
on [n] ={1,2,...,n} and the cyclic group Cj, on {0,1,...,k—1}, see Adin and Roichman [2]
and Wagner [18]. The elements in S,’f are also called colored permutations, see Bagno, Butman
and Garber [5]. Derangements with respect to the wreath product S* have been studied by
Chow and Shiu [9], and Faliharimalala and Zeng [10, 11].

A k-colored permutation is written in the form 7(1)., 7(2)¢, - -+ m(n)e,, where (1) m(2) - - -

is a permutation on [n] and ¢; € {0,1,...,k—1}. For example, 49 3¢ 12 50 2; is a colored per-



mutation in Sg’. We define a total order on the colored letters as follows
11 <2p 1 < oo <M1 < 1o <20 <o <N < - < 1pg <29 < -+ - <y (1.1)
Let us recall the following definitions:

D(o):={ien—1]:0(i) >o(i + 1)},

maj(o) := Z i
)

1€D(o
Nj(0) := #{i € [n]: 0(i) has subscript j}, j=1,...,k—1,
fmaji (o) := kmaj(o) + N1(o) + 2Na(0) + -+ (k — 1) Ng_1(0). (1.2)

The set D(o) is called the descent set of ¢ € S¥, and an element in D(0) is called a
descent of o. It should be noted that Adin and Roichman [2] have given the definition of flag
major index of an element in S¥ by the unique factorization into Coxeter elements, and they
have shown that fmaj, has the above expression (1.2). In this paper, we will use the formula

(1.2) as the definition of the fmaj, index.

For k = 1, S} is usually written as S,. For k = 2, S becomes the group of signed
permutations on [n], often denoted by B, and the minus sign is often denoted by a bar.
Moreover, setting k& = 2, the fmaj;, index reduces to the fmaj index for signed permutations
as defined by

fmaj(m) = 2maj(m) + N(w),

where N (7) denotes the number of negative elements of 7 and maj(7) is defined with respect
to the following order
I<2<---<n<l<2<---<n.

Using labeled partitions with colored permutations, we give a combinatorial proof of the
generating function formula for the fmajy indices on S¥,

Z g™ = [k]g[2K]y - - [kl (1.3)

meSk

where [k], = 1+q+q?+---+¢*1. The above formula is a natural extension of the formulas
for the generating functions for the major index and the fmaj index, see Faliharimalala and
Zeng [11]. Bijective proofs have been given by Adin and Roichman [2], Haglund, Loehr and
Remmel [14]. Foata and Han [12] found a combinatorial interpretation of the equidistribution
of the fmaj index and the finv index for signed permutations, which implies the generating
function formula for the case k = 2, that is,

Z g™ = [2]q[4]q - - [2n]q- (1.4)

7T€Bn



The second result of this paper is a combinatorial treatment of a relation on the g-
derangement numbers DF(q) with respect to S. This relation implies the formula for d¥(q),
as given by Faliharimalala and Zeng [11]. For n > 1, let

Dy, :={oc € Sy:0(i) #1i for all i € [n]}

be the set of derangements on S,,. Gessel defined the ¢-derangement numbers by
i) = Y )
UE@n

and proved that

dn(q) = Mq'ZTM’ (1.5)

" (~1)5q?)
k=0

where [n],! = [1]4[2]4 - - - [n]q. Wachs [16] found a combinatorial proof of the above formula.
Chow [8] generalized the argument of Wachs to the type B case. Chow defined

98 = {0 € B,: o(i) # i for all i € [n]}

as the set of derangements in B,, and

It has been shown that

(1.6)

The notion of derangements of type B can be generalized to S¥, as given by Faliharimalala
and Zeng [11]. Define

¥ .= {0 € S : a(i) # g for all i € [n]}

and

di(a):= Y ¢,

cEDE
Faliharimalala and Zeng have shown that
" (21)igF)
; [k]qpk]q T [jk]q'
0

1=

dfz(Q) = [k]q[2K]q - - - [nk]q

(1.7)

The argument of Chow for d?(g) can be extended to d¥(q). Our proof is based on
the structure of labeled partitions with colored permutations, which is an extension of the
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combinatorial approach of Chen and Xu [7] for ordinary permutations. We will present the
proof for the case k = 3, which is valid for the general case.

The third result is concerned the following formula of Gessel and Simon [17] on signed
g-counting of permutations with respect to the major index:

Z Sign(”)qmaj(ﬂ) = [1]11[2]—11[3]11[4]—61 T [n}(—l)"*lq-

Note that a combinatorial proof of the above formula has been given by Wachs [17]
based on permutations. We will present an involution on labeled partitions which serves
as a combinatorial proof of the above formula. Moreover, our involution can be extended
to signed permutations. This gives a combinatorial proof of the following formula of Adin-
Gessel-Roichman [3] for signed g-counting of signed permutations with respect to the fmaj
index:

S sign(m)g™H® = (2] 4], 20] 1y

TEB,

2 Labeled Partitions and the fmaj, Index

In this section, we introduce the notion of labeled partitions with colored permutations.
Using this structure, we give a combinatorial proof of the following formula for the generating
function of the fmajj, indices of colored permutations in S¥, given by Adin and Roichman [2],
see also Haglund, Loehr and Remmel [14], Faliharimalala and Zeng [11].

Theorem 2.1. Forn > 1, we have

3 T = [k]y[2K] - [nk],.

meSk

Recall that given a colored permutation 7 € S¥, N;(7) is the number of elements 7 (i) € 7
with subscript j, where j = 1,2,...,k — 1. The fmaj, index which is originally defined
algebraically by Adin and Roichman has the following equivalent form

fmaji(7) = kmaj(m) + Ni(7) + 2No(7) + -+ - + (k — 1) Ni—1().

Clearly, Theorem 2.1 is a generalization of the formulas for permutations and signed
permutations. We shall give a combinatorial proof of Theorem 2.1 by using labeled partitions
with colored permutations.

Let A = (A1, A2,...,A,) be an integer partition with at most n parts where A\; > Ao >
- > Ay > 0, see Andrews [4]. We write |A| = A\ + A2 + -+ + Ay A labeled partition
associated with S? is defined as a pair (\,7), where \ is a partition with at most n parts



and m = 7(1)7(2)---7(n) is a colored permutation in S2. We can also employ the two-row
notation to represent a labeled partition

Mo A
n(1) w(2) - w(n) )
A labeled partition (A, 7) is said to be standard if 7(i) > (i + 1) implies \; > A\j41.
Equivalently, a labeled partition (A, ) is standard if \; = A,y implies 7(i) < w(i+1). Given

a colored element w;, we use c¢(w;) to denote the color or subscript 7, and use d(w;) to denote
the element w after removing the color i.

Let P3 denote the set of partitions with at most n parts such that each part is divisible
by 3. For any m € S3, we denote by Q, the set of standard labeled partitions such that

n’

Ai —¢(m(4)) is divisible by 3.

Lemma 2.2. For any © € S2, there is a bijection gr: X\ — (u,7) from P32 to Q. such that
Al + fmajs () = |pl.

Proof. Define i to be
= (A1 +3a1 +c(m(1)), A2 + 3az2 + ¢(7(2)),..., A\ + 3an, + c(mw(n))),

where a; is the number of descents in 7(i)7(i + 1) - - - 7w(n). From this definition, we see that
i is a partition and p; — c(m(7)) is divisible by 3. It suffices to show that (i, ) is standard.
We have the following two cases.

Case 1: \; > \j11. We have
Ai +3a; +c(m(i) = pi > pit1 = Ni+1 + 3ai41 +c(m(i + 1)),
since A — Aiy1 > 3,a; > a1 and |c(7(7)) —c(m(i + 1))| < 3.
Case 2: \; = A\j11. We further consider the following two subcases:
(i) w(i) > w(i + 1). It is easy to verify that
Ai +3a; +c(m(i) = pi > piv1 = Nit1 + 3ai41 +c(n(i + 1)).
(ii) w(i) < w(i+1). If 7(é) and 7(i + 1) have the same subscript, then we have
N+ 3a; +c(m(2) = pi = pir1 = Nip1 + 3ai41 +c(w(i + 1)).

Otherwise, we find that the subscript of m(¢) is greater than that of 7(i + 1). This
implies that

i +3a; +c(m(i) = pi > pit1 = Ni+1 + 3ai41 +c(m(i + 1)).



Hence the labeled partition (u, ) is standard. Conversely, given a labeled partition (u,7) €
Qr, we can recover the partition A € P2 by reversing the steps of the above procedure. |

As a consequence of the above bijection, we obtain the following identity.

Theorem 2.3. Forn > 1, we have

Z g™mia(m) — [3]¢[6]g - - - [Bnq- (2.8)

weSy

Proof. We consider the following equivalent form of (2.8):
1 fmajs () 1
R q J3 =
(¢ ¢*)n g;;,, (I—q)"

where
(€% =1 -a")1=¢%---(1—¢").

Let W, be the set of sequences of n nonnegative integers. Note that (qg,ég)n and (1_1q)n are

the generating functions for numbers of elements in P2 and W,,, respectively. We wish to
construct a bijection ¢: (A, 7) — s from (P3,53) to W, such that

|A| + fmajs(m) = |s|,
where |s| denotes the sum of entries of s. The bijection ¢ can be described as follows:

Step 1. Use the bijection in Lemma 2.2 to derive a standard labeled partition (u, ) from
(A, m).

Step 2. Based on the two row representation of the labeled partition (u, ), we permute the
columns to make the second row become the identity permutation by ignoring the subscripts
of the elements in 7. Let s denote the first row of the resulted array.

It is not difficult to see that the above procedure is reversible. The inverse of ¢ consists
of four steps.

Step 1. For a sequence s = (s(1),s(2),...,s(n)) € Wy, we construct a two row array

Step 2. For each element ¢ € [n], we may construct a colored permutation 1.2, - nc,,
where ¢; = s(i) (mod 3). Clearly, we have s*(i) = s(i) — ¢; is divisible by 3. So we are led to

the following array
s*(1) s7(2) .-+ s(n)
1., Dy e Mg, ’

Step 3. Permute the columns of the above array to make the first row s*(j1)s*(j2) - - - s*(jn)
in decreasing order. Moreover, we rearrange the elements in the second row in increasing
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order if they correspond to the same elements in the first row. Let us denote the resulted

labeled partition by
( s*(j1) s*(j2) -+ $"(n) )
6(1)e, 0(2) s(n),, )

€1 €2 €n

Step 4. Recover the initial labeled partition (A, 7) from the array produced in Step 3 by the
following rule:

(A5, 7) = ( s*(j1) —3a1 s*(j2) —3az -+ $"(jn) — 3an ) :
5(1) 5(2) d(n)

el €2 €n

where ay, is the number of descents in the colored permutation §(k),, ---d(n),, -
It is routine to check that the above procedure is feasible. Moreover, one can verify that
¢-¢ ' =id and ¢! - ¢ = id, where id is the identity map. This completes the proof. |
For example, let n = 7, A = (18,18,18,9,9,6,3) and m = 3249 6¢ 51 7221 1o. We obtain
s = (5,10,29,29,16,27,14) by the following two steps:

1818189963Ste_p>12929271614105
30 40 6p 51 79 27 1o 30 40 6p D51 79 21 1o

SP2 (5,10,29, 29, 16, 27, 14).
The reverse process from s to (A, 7) is illustrated as follows:
(5,10, 29, 29, 16, 27, 14)

Ste_p)l 5 10 29 29 16 27 14 Ste—p>2 3 9 27 27 15 27 12
1 2 3 4 5 6 7 lg 21 32 42 51 6g 72

Ste_p>3272727151293Ste_p>41818189963
32 42 69 51 T2 21 19 32 42 60 51 T2 27 1y )

3 Labeled Partitions and g-Derangements Number-
S

In this section, we give a combinatorial treatment of a relation on the ¢g-derangement numbers
for Sﬁ. This relation leads to the formula of Faliharimalala and Zeng for dfl(q). We will give
the proof for the case k = 3. It is easily seen that the argument applies to the general case.

Following Wachs [16] and Chow [8], we define the reduction of a colored permutation o
on a set of positive integers A = {a; < ag < --- < ay} by substituting the element a; with
1 while keeping the colors of the elements. A position ¢ is called a fixed point of a colored
permutation 7(1)7(2)---7w(n) if 7(i) = ig. The derangement part of a colored permutation



o € S3, denoted by dp(c), is the reduction of the sequence obtained from ¢ by removing the
fixed elements. For example, dp(8¢ 12 51 40 31 60 71 22) = 69 12 41 31 51 29.

We have the following extension of the relation of Wachs [16] to colored permutations.

Theorem 3.1. Let o € @fj. For 0 < k <n, we have

Z quaj3(0) _ quajg(a) [n] . (3.9)
dp(o)=a,ceS3 g e

It should be noted that the above theorem can be proved by the method of Wachs [16]
which has been extended by Chow [8] to signed permutations. We will give a combinatorial
proof based on labeled partitions with colored permutations.

For any m = w(1)7(2) ---w(k) € S}, we can insert a fixed point j with 1 < j < k+1 into

7 to obtain a permutation 7 in S,?; 41+ Precisely, 7 is given by

=7 ()" (2)---7'(j — 1)jor' (j) - - - 7' (k),

where

- {(dw(i)))d(w(z'», i d(r(0)) < .

(c(m(2)))(d(m(2)) + 1), otherwise.

In other words, 7 is the unique permutation with ¢ being a fixed point such that the
reduction of the sequence obtained from 7 by deleting the element at position i equals 7. For
example, let m = 42 10 20 61 51 32 and ] = 3. We have ™ = 52 10 30 20 71 61 42.

Proof of Theorem 3.1. First of all, we reformulate the relation (3.9) in the equivalent form

1 fmaj; (o) 1 fmaj; ()
¢imais(9) — q s\ 3.10
(@%¢°)n dp(g)zzc;oess (0% @®)e(@% @*)nr (3.10)

We proceed to make use of labeled partitions to give a combinatorial proof of (3.10). Let R,
be the set of colored permutations o € S3 such that dp(c) = a. We aim to give a bijection
0: (N, o) = (B,7) from (P3, Ry) to (P2, P3_,) such that

[Al + fmajs(o) = [8] + || + fmajs(a). (3.11)

This bijection consists of the following three steps.

Step 1. Apply the bijection g, given in Lemma 2.2 to get a standard labeled partition (A*, o)
from A.

Step 2. Let o(i1),0(i2),...,0(in—k) be the fixed points, and o(j1),0(j2), - ..,0(jk) the non-
fixed points of 0. We decompose A* into two parts, namely, A*(i1), A*(i2), ..., \*(ip—k) and
A (J1), A*(J2), - - s A" (Jk)- Let v = (A*(41), A*(42), . . ., N (in—g)) and B* = (A*(51), \*(42), - - -, A*(Jk))-
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Step 3. Apply g;! to (3%, «) and denote the resulted partition by 3.

To prove that the above procedure is feasible, it is necessary to show that 8* generated in
Step 2 satisfies the condition that (3%, ) belongs to Q, so that one can apply g, '. Observe
that for any 1 < ¢ < k, 0(jq) and a(q) have the same subscript since a(q) is obtained by the
reduction operation. It follows that

(@) — c(alq)) = A"(dq) — c(a(a))

is divisible by 3 for any 1 < ¢ < k. To verify that (8*, «) is standard, it suffices to show if
o(p) > o(q) with o(p+1),...,0(q¢ — 1) being at the positions of fixed points, then we have
Ay > Ay When g = p + 1, we see that A\j > A7 since (A\*,0) is standard. When ¢ > p + 1,
it is easy to see that either o(p) > o(p+ 1) or o(q¢ — 1) > o(q). Therefore, we have either
Ay > Apiqor Ay > Aj. Since A" is a partition, we have Aj > A7, Hence the bijection is well
deﬁned

It remains to show that the above procedure is reversible. We proceed to construct the
inverse map n from (P2, P3_,) to (P32, R,), which consists of three steps.

Step 1. Apply g, to 5 and denote the resulted partition by (5, Q).

Step 2. Let (:\0 0) = (B, ). We insert v; into (A", 0"1) to get (A, ¢%). Find the first
position 7 in A\“~! such that the insertion of ~; to this pos1t10n will generate a part1t10n We
denote this partition by N Obviously, we have )\’ > )\ = ;. Suppose that )\’ =
)\Z > )‘t+1 for some t > r. If r = t, we set s = r. Otherwise, we look for a position s, from
left to right, subject to the condition

o7 s —1) < 59 <o H(s),

here we treat o' !(r — 1) as —oo and o*~!(¢t + 1) as co. In this way, we obtain o’ from
o'~ by inserting sg as a fixed point. In fact, this procedure guarantees that the subsequence
ol(r),ol(r+1),...,0%(t) is increasing. That is, (X, o) is a standard labeled partition. On the
other hand, since v € PS—k and each fixed point has subscript 0, we find that ~; is divisible
by 3 for each 1 < i < n — k and thus (A, %) € Q..

Step 3. Apply g_nl,k to (5\”_’“, o™ %) and denote the resulted partition by A"~*.

We claim that \»™* and 6"~ % are equal to \ and o, respectively. This implies that 7 is
the inverse of . From Lemma 2.2, it is easily seen that §* = 3. Since A"~ ¥ is the partition
obtained from g by inserting v1,...,V,—k, we have \* = Ak,

It remains to show that 0" % = &. It suffices to verify ¢”* and ¢ have the same fixed
points. By removing the common fixed points, let us use f, or fy, to be more precise, since
the color of f is 0, to denote the first fixed point of o, which is different from the first fixed
point of f’ of 6" F. It is clear that

o(f-1)< fo<o(f+1)—1.
By the choice of f’, we infer that f’ < f. On the other hand, A*(f) = A*(f’). Since (\*,0)
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and (\*, 0" %) are both standard labeled partitions, we have

o(fy<o(ff+1)<---<a(f),
and
o) < o RE(F +1) < - <o TR ().

Using the fact that \*(f) = \*(f), 6" *(f) and o™ *(f') have the same subscript, we deduce
that o™ %(f) has the subscript 0 as o™ *(f’).

Recall that by assumption o(f) = f and o™ *(f’) = f’. Since
o(f) <o(f +1) < <o(f)

and o(f) = f, it follows that o(f’) < f’. Recalling that f is the first fixed point of o, we
obtain

a(f)=a(f) < f.

From the construction of 6"~ %, we get

o) <alf) < 7

which contradicts the assumption that ™ *(f’) = f’. This implies that ¢ = " *. Again by
Lemma 2.2, we conclude that A = A" . Hence 7 is the inverse map of . This completes the
proof. |

For example, let n = 8, A = (18,12,12,12,9,9,6,3) and 0 = 52 19294081 69 71 32. We

have
29 21 21 21 16 10 5)

ga()\):<52 lo 20 40 71 61 39

The fixed points of ¢ are 4y and 69, and o« = dp(c) = 43 19 20 61 51 32. Decomposing (29, 21, 21, 21,
16,15,10,5), we get ((29, 21,21, 16,10, 5), (21, 15)). Applying g5 to 8* = (29,21, 21,16, 10, 5)
gives f = (18,12,12,9,6,3) and v = (21, 15).

_ Conversely, given a = 45102061 51 32 and (8,7v) = ((18,12,12,9,6, 3),(21,15)), we have

B =(29,21,21,16,10,5). The insertion process is illustrated as follows,

29 21 21 16 10 5 71_:2>1 29 21 21 21 16 10 5
49 1o 29 61 51 32 92 1o 29 49 71 61 32

72_:1>5 29 21 21 21 16 15 10 &
52 1o 20 49 8 69 71 39

So we get )\" k=(29,21,21,21,16,15,10,5), 0™ % = 5519 20 40 81 60 71 32. Finally, we obtain
AR =gl = (18,12, 12,12,9,9,6,3).
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4 Involutions on Labeled Partitions

In this section, we give an involution on labeled partitions which leads to a combinatorial
interpretation of a formula of Gessel and Simon on signed g-counting of the major indices.
This involution can be easily extended to signed permutations. This gives a combinatorial
proof of a formula of Adin, Gessel and Roichman on signed g-counting of fmaj indices.

Recall that the sign of a signed permutation is defined in terms of the generators of B,
as a Coxeter group. Consider the generating set {sg, s1, s2,...,S,—1} of By, where
so:=[-1,2,3,...,n], and s;:=1[1,2,...;0—1,i+1,i,i+2,...,n]
for 1 <i <n — 1. The sign of a signed permutation 7 is defined by
sign(m) == (—1)'™),
where [() is the standard length of m with respect to the generators of B,,.

The following theorem is due to Gessel and Simon [17].

Theorem 4.1.

> sign(m)g™ ™ = [1]4[2]-4[3ly[4]—¢ - - - [n](—1yn1g- (4.12)
TESh

A combinatorial proof of the above formula has been given by Wachs [17]. Here we shall
give an involution on labeled partitions and shall show that this involution can be easily
extended to the following type B formula due to Adin, Gessel and Roichman [3].

Theorem 4.2.

S sign(m)g™ i = [2]_y[4 - [20] 1yeq. (4.13)
TEB,

To describe our involution on labeled partitions as a proof of (4.12), we may reformulate
it into the following equivalent form:

; sion (7 maj(m) _ 1
G 2 O = g oa g o O

Proof of Theorem 4.1. We consider the two cases according to the parity of n.

Case 1. n is even, i.e., n = 2k. In this case (4.14) takes the form

1 . 1
: Z sign(7) g™ = - (4.15)
(@ Q)or S5 (1-¢?)
Notice that the right hand side of (4.15) is the generating function of sequences (a1, as, . . . , agy)

satisfying ag;—1 = ag; for i = 1,2,..., k. Meanwhile, the left hand side of (4.15) is the gener-
ating function of labeled partitions on S,, with at most 2k parts under the assumption that
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a labeled partition (A, ) carries the sign of the permutation w. To be more specific, such
labeled partitions are called signed labeled partitions. We wish to construct an involution on
the set H of signed labeled partitions (A, 7) such that the generating function of the fixed
points of the involution equals the right hand side of (4.15). This involution consists of three
steps.

Step 1. Let (A, 7) be a labeled partition such that 7 € Soi and A\ = (A1, Ag, ..., Agg) with
AL > A > > Ao > 0. I |77 1(1) — 77 1(2)] # 1, we define
7(i), i# 7 (1) and 771(2),
(1),
71(2).

-

—

—~

|

SN—

—~

.

SN—
I
=N
~ ~
1l

Obviously, (A, 7) and (), ¢! (7)) have opposite signs and maj(7) = maj(¢*(r)). Consequently,
we have
maj(m) + [A] = maj(¢' (1)) +|Al,

and so these two elements cancel each other.

In the case that |[771(1) — 771(2)| = 1, we have maj(n) # maj(¢*(r)). So we consider
that the set H! of signed labeled partitions (), 7) such that |[7=1(1) —7~1(2)| = 1. Repeating
the above procedure, some elements in H' will be cancelled. At this stage, we consider the
positions of the elements 3 and 4. Similarly, if [771(3) — 7=1(4)| # 1, we define

7(i), i# 7 1(3)and 771(4),
Fm()=q 4, i=m"(3),
3, i=n"1(4).
Therefore, (A, ) and (), $(7)) have the opposite signs and
maj(m) + Al = maj(¢?(m)) + Al
In other words, these two elements cancel out in the set H'.

Similarly, we use H to denote the subset of H! such that |[7~1(3)—7~1(4)| = 1. Repeating
the same procedure, we may consider the elements {5,6},{7,8},...,{2k — 1,2k} and obtain
a sequence of subsets Hk € HF-1 C ... C H!. Let qﬁi (1 < i < k) denote the functions
defined in the above procedure. It is not difficult to see that for a labeled partition (A, 7) in
H*_ we have

71 1) =77 2) =1, 7t 3) —a @) =1, ..., 7 T2k — 1) — 7 1(2k)| = 1.
Namely, any odd number 2i — 1 is next to 2¢ in w for allt =1,..., k.

Step 2. For any labeled partition

Ao Armg) Agmiay o Az
(/\777) = )
(1) -2 1 - w(2k)
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we define (f1()\), g'(7)) as follows

< A1 +1 --- )\7r71(2) +1 )\7r*1(1) o A?k‘ )

1 1 _
o= 2 (2k)

where f1(\) is the partition obtained from \ by adding 1 to the first 771(2) parts of A and
g*(m) is the permutation obtained from 7 by exchanging the positions of 1 and 2.

Note that (A, 7) and (f'()\), g' (7)) have opposite signs. Moreover,
maj(7) + |A] = maj(g' () + [f (V)].

Therefore, (A, 7) and (f*(\), g (7)) cancel out in H¥. Observe that the resulted labeled par-
tition (f1(\), g'(m)) has the additional property that fl()\)w—l(l) is greater than fl()\)w—l(Q).
By inspection, we see that after cancellation, the remaining elements in H* are of the follow-

ing form
) At Ay Armg) ot Agk
77T =
(1) ... 1 2 o (2
k

where Ar-1(1) = Ar-1(2). Let HF denote the set of remaining elements in H* that of the
above form.

We iterate the above process for H f with respect the relative positions of 3 and 4. It is
easily seen that for any labeled partition (A, 7) in H {“ , 1 appears before 2 in m and Ay-1(1) =
Ax-1(2)- Now, for any element (A, 7) € HE, if

AL e )\71.—1(4) )\ﬂ.—l(3) s Aok
(A7) = )
w(l) --- 4 3 <o m(2Kk)
then we can find another labeled partition (f2(\), g%(n)) € HY

MA1 o Mo +1 Ao - Ask
(f2()\),g2(77)) _ ( 4) (3) ) )

(1) - 3 4 <o m(2Kk)
Again, (A, 7) and (f2()), g?(w)) cancel each other in Hf. Notice that f(\),-1(3) is greater

than f2()\)ﬂ_1(4). So the remaining labeled partitions after the above cancelation are of the

following form
(Ay ﬂ-) == >\1 o )\ﬂ-_l(g) )\ﬂ-_l(4) o )\Qk 9
m(1) --- 3 4 < m(2k)

where A\;-1(3) = Ar-1(4). We now denote the set of the remaining labeled partitions by HY
and continue the above process. In the end, we get H,’j - H,’jfl c..-C H{“ Moreover, in
the above process we have defined the functions f* and ¢* for i = 1,2,..., k.
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Evidently, for any labeled partition (A, 7) in H,’j and for any 7 € {1,...,k}, 2i— 1 appears
immediately before 2¢ and A;-1(2;_1) = Az-1(2;). It is also clear that all the labeled partitions
in H ,’; have positive signs.

Step 3. Permute the columns of the labeled partitions (A, 7) in H. ,’: so that the elements in w
are rearranged in increasing order. Taking the first row of the resulted two row array, we will
get a sequence (ai,as,...,a9,_1,as) such that ag;—1 = ag; (i = 1,...,k) whose generating
function is the right hand side of (4.15).

It is easy to see that the relation (4.15) can be justified by the above algorithm. Hence
Theorem 4.1 holds when n is even.

Case 2. n is odd, i.e., n = 2k + 1. We need to show that

1 .
T sign(m)g™i®) =
(6 @21, G~

1
(1-¢)*(1—-q)

(4.16)

The proof is similar to the reasoning when n is even. We may employ the same op-
erations in Step 1 and Step 2 by ignoring the element 2k + 1 while making the pairs
{1,2,},{3,4},...,{2k — 1,2k}. The only difference lies in Step 3. When we take the first
row of the resulted two row array, we encounter a sequence (ay, as, ..., a1, 2k, G2k+1) such
that ag;—1 = ag; (i = 1,...,k). Moreover, agx+1 can be any positive integer. This completes
the proof of (4.16).

So far we have constructed a sign reversing involution

(0, x): (A ) = (0(A), x())-

To be more specific, the map (0, x) is given by

( (A9 (), if(\,m) € H\ H',
(\, p?(7)), if(\,7) € H'\ H?,
(A, ¢* (), if(\,7) € H*1\ H,
(O(N), x(m)) = (F1(N), g (), if(A\, 7)€ HF\ HY,

(A).g°(
(F2(N), g%(m)), if(A\, ) € HY \ H3,
(F*N), g*(m)), if(\, ) € Hy |\ Hy,
(\, ), if(\, ) € HF,

where ¢'(m), f/(\) and g*(7) are defined in the above algorithm. It is easy to verify that the
map is sign reversing, that is, if (A, 7) is not a fixed point of the map (6, x), then we have
sign(6(A), x(m)) = —sign(A, 7) and

[0V + maj(x(m)) = [A] + maj().
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The fixed points of the map (6, x) correspond to the right hand side of (4.12). This completes
the proof. ]

We now turn to the proof of Theorem 4.2, and we need a characterization of the length
function of signed permutations [6, Propostion 3.1 and Corollary 3.2].

Lemma 4.3. Let 0 € B, we have
(o) =inv(o)+ > lo(i)l,
{1<i<n|o(i)<0}

where inv (o) is defined with respect to the order

i< <l<l< - <n.

Observe that in the definition of the fmaj index on B,, we have imposed the order

1< <n<l<---<n
or in the notation of colored permutations,

1< ---<ni <lg<---<ng.

The above lemma is useful for the construction of a sign reversing involution for the
formula (4.13) for B,. Given a signed permutation o € B,, we may construct a signed
permutation o’ as follows. If 1 and 2 have different signs or 1 and 2 have the same sign but
are not adjacent in o, then we exchange 1 and 2 without changing the signs. By Lemma 4.3,
we see that the ¢/ and o have opposite signs and fmaj(o) = fmaj(o’).

For example, let o = 492151 1931. We have o/ = 491151 2031. Clearly, 0 and ¢’ have
opposite signs.

Using the above rule, we can easily extend the above involution for permutations to signed
permutations. The details are omitted.
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