W.Y.C. Chen and C.C.Y. Gu,
The reverse ultra log-concavity of the Boros-Moll polynomials,
Proc. Amer. Math. Soc. 137 (2009) 3991-3998.

Cited by


  1. W.Y.C. Chen, C.C.Y. Gu, K.J. Ma and L.X.W. Wang, Higher order log-concavity in Euler’s difference table, Discrete Math. 311 (2011) 2128-2134.

  2. W.Y.C. Chen, S.X.M. Pang and E.X.Y. Qu, Partially 2-colored permutations and the Boros–Moll polynomials, Ramanujan J. 27 (2012) 297-304.

  3. W.Y.C. Chen and E.X.W. Xia, 2-log-concavity of the Boros–Moll polynomials, Proc. Edinb. Math. Soc. (2) 56 (2013) 701-722.

  4. W.Y.C. Chen and E.X.W. Xia, Proof of Moll’s minimum conjecture, European J. Combin. 34 (2013) 787-791.

  5. A. Dixit, V.H. Moll and V.A. Pillwein, A hypergeometric inequality, Ann. Comb. 20 (2016) 65-72.

  6. D.A. Goldberg, Second-order Markov random fields for independent sets on the infinite Cayley tree, Ann. Appl. Probab. 26(5) (2016) 2626-2660.

  7. J.L. Gross, T. Mansour, T.W. Tucker and D.G.L. Wang, Log-concavity of combinations of sequences and applications to genus distributions, SIAM J. Discrete Math. 29 (2015) 1002-1029.

  8. E.H. Liu, Skew log-concavity of the Boros-Moll sequences, J. Inequal. Appl. (2017) Paper No. 117, 5 pp.

  9. A. Llamas and J. Martínez-Bernal, Nested log-concavity, Comm. Algebra 38 (2010) 1968-1981.

  10. L. Lv, A short proof of Moll's minimal conjecture, Electron. J. Combin. 24(4) (2017) Paper 4.7, 4 pp.

  11. E.X.W. Xia, The concavity and convexity of the Boros-Moll sequences, Electron. J. Combin. 22 (2015) Paper 1.8, 11 pp.

  12. F.-Z. Zhao, The log-convexity of Cauchy numbers, J. Indian Math. Soc., New Ser. 80 (2013) 395-403.

  13. F.-Z. Zhao, The log-behavior of the Catalan–Larcombe–French sequence, Int. J. Number Theory 10 (2014) 177-182.

  14. F.-Z. Zhao, The log-balancedness of combinatorial sequences, Sarajevo J. Math. 11(24) (2015) 141-154.