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In this paper we introduce a combinatorial framework which p ro- We will discuss below that the DP-paradigm is ideally sufi@dan

vides an interpretation of RNA pseudoknot structures as sam -
pling paths of a Markov process. Our results give insight int o]
the cross-serial interactions of RNA pseudoknot structure S, i.e.
their crossings. They facilitate a variety of applications ranging
from the energy based sampling of pseudoknot structures as w ell
as the ab initio folding via hidden Markov models. Our main re-
sult is an algorithm which generates RNA pseudoknot structu res
with uniform probability in linear time. This algorithm ser ves as
a stepping stone to sequence specific as well as energy based
transition probabilities. The approach employs a correspo ndence
between pseudoknotstructures, parametrized in terms of th e max-
imal number of mutually crossing arcs and certain tableau se -
quences. The latter can be viewed as lattice paths, whose gen -
erating functions are shown to be  D-finite. The main idea of this
paper is to view each such lattice path as a sampling path of a
stochastic process and to make use of  D-finiteness for the effi-
cient computation of the corresponding transition probabi lities.

inductive, or context-free, structure-class. Howevee thuthe cross-
serial bonds RNA pseudoknot structures cannot be recilysien-
erated. Accordingly, wa priori know that the DP-paradigm is only
of limited applicability for RNA pseudoknot structures. &ddition,
DP-based approaches are not even particularly time effjgemt in
case is [26] exhibiting a time complexity 6f(n°). The algorithmic
difficulties are confounded by the fact that the thermodyicanof
pseudoknots is poorly understood; we suspect that thislesaat in
part the case because of the well-known difficulties in mgkise of
such information even if it were available.

Within the DP-paradigm, it is unlikely that substantial irape-
ments can still be made. Here, we introduce the mathemétéoak-
work for a completely different view on pseudoknotted stawes that
is not based on recursive decomposition, i.e., parsing waor(some
extension of) context-free grammars (CFG). The approaah we

take here is based on the observation that pseudoknottedsRINé:
tures are in a natural way related to well-understood coatbiial
objects. The key algorithmic innovation is a Markov proctes ef-
ficiently generates pseudoknotted structures with a umifoeasure.
Biophysical realism can be added by modifying the transitates of
this fundamental Markov process.

. In order to put our approach into context, let us give a rgtective
Pseudoknots have long been known as important structural elgyerview. Three decades ago Waternearl. [33, 24, 13] analyzed

ments [34], see Fig. 1. These cross-serial interactionsé®®t  RNA secondary structures. Secondary structures are cgeageed
RNA nucleotides are functionally important in tRNAs, RNB4@0],  RNA contact structures, see Fig. 2.

telomerase RNA [28], and ribosomal RNAs [18]. Pseudoknots i
plant virus RNAs mimic tRNA structures, and vitro selection ex-
periments have produced pseudoknotted RNA families tinaittoithe
HIV-1 reverse transcriptase [31]. Import general mechasissuch
as ribosomal frame shifting, are dependent upon pseudskapt

RNA pseudoknot structure | k-noncrossing structure | uniform generation |
tableau | lattice path

Abbreviations:

Fig. 1. The Hepatitis Delta Virus (HDV)-pseudoknot structure egamted as
a planar graph and as a diagram: we display the structureldedfdy the
ab initio folding algorithmcross [10] (left) and the diagram representation
(right).
Reserved for Publication Footnotes

Despite their biological importance, pseudoknots arecyipy ex-
cluded from large-scale computational studies. Althotnghproblem
has attracted considerable attention in the last decadeeseral soft-
ware tools [26] have become available, the required ressuhave
remained prohibitive for applications beyond individuablecules.
Lyngsoet al. [22] have shown that the prediction of general RNA
pseudoknot structures is NP-complete. In the literatufientimes
some variant of the dynamic programming (DP) paradigm isleyeg
[26]. This DP-method generates certain subclasses of pkaats.
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Pt eralization. The notiork-noncrossing stipulates that the complexity
of a pseudoknot is related to the maximal number of mutuabhgs:

60 U _
3 ing bonds. Indeed, most natural RNA pseudoknots3arencrossing
3 At ol i ;

76 ™ 70 T [9]. Due to the cross-serial interactions, the numbers efigsknot
hanassy & a0 o structures do not satisfy a recursion of the type of eq. gndering
AahAL *,‘ ‘,‘?’?'?I > theab initio folding into minimum free energy configurations [10, 22]

5 Mg _a? 0% o8 as well as the derivation of detailed statistical propsrtenontrivial
;:3 task. Indeed, in orderto derive statistical propertiesgitire space of
;P'\:‘ structures has to be exhaustively generated, which is adgiple for
LS. B small sequence lengths. Only a few statistical resultsyeiusing
singularity analysis of the bivariate generating funcsi@re known
[17].

There exists no general framework for the uniform generatib
elements of a non-inductive combinatorial class. Howeré¢he con-
text of graphs the subject of uniform generation via Markoweesses
,,,,,,,,,,,,,,,,,,,,,,,,,,,@ww,,,@,,mmww has been studied. Work on the uniform generation of specisigs in
1 10 20 30 40 50 60 70 the context of parallel random access machine (PRAM) canoedf

in [39] and Jerrurret al. [11, 12] studied approximation algorithms
v in the context of rapidly mixing Markov-chains [1]. We alsefer to
, the paper of Wilf [35] as well as the book [36].

Our approach is as follows: we translétaoncrossing diagrams

into specific lattice walks, see Fig. 4

Fig. 2. The phenylalanine tRNA secondary structure representeal zla-
nar graph (top)2-noncrossing diagram (middle) and Motzkin-path (bottom),

where up/down/horizontal-steps correspond to startienmiired vertices, re- /\
N\

spectively. o a Y ata
v—v v e v v e v—v v v v e
1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4
) ) ¢41D*El:|*g*5f ﬁ’*D*H*D*?’ g0 > pg>0O>2 g0 > g+ g g
They can be represented as diagrams, i.e. labeled graphtheve I I A
vertex sefn] = {1,...,n} with vertex degrees 1, represented by —~ N
drawing its vertices on a horizontal line and its aftgj) (¢ < j), in —0 o O thJ O o 9V 0 o b o 9
the upper half-plane, see Fig. 1 and Fig. 3. Here, verticesaars oo oo oo oo
correspond to the nucleotidés G, U andC and Watson-Crick4-U, PrrmamOnr gmenfmans pnOmnm s gmemamaey

G-C) and U-G) base pairs, respectively.
In a diagram two arc$i1, j1) and(i2, j2) are called crossing if

i1 <2 < j1 < je holds. Accordingly, &-crossing is a sequence 9—9o—9—2  O—o—0—0

of arcs(i1, j1), ..., (ix, jx) such thatiy < iz < --- <idp < j1 < SO L0 g ek g s

J2 < -+ < jk, Fig. 3. T T L2 s s
Fig. 4. Translating diagrams into sequences of “shapes”. We display all 3-
noncrossing diagrams over four vertices and draw their corresponding sequences
of shapes underneath.

(0

e ot at o S I e et o and view the latter as sampling paths of a stochastic prpsess
123456 7 8 91011121314 123456 7 8 91011 F|95

Fig. 3. k-noncrossing diagrams: a noncrossing (left) aderencrossing dia-
gram (right) containing the three mutually crossing dficsr), (4, 9), (5, 11).

Step 1 Step 2 Step 3 Step 4 Step 5
We call diagrams containing at mo$kt — 1)-crossings, k- &
noncrossing diagrams:{noncrossing partial matchings). RNA sec- & P=4/8 P=1/2 |
ondary structures have no crossings in their diagram reptaton, P=5/13 P=0
see Fig. 3 (l.h.s.)and Fig. 2, and are therefareoncrossing diagrams. - &
The efficient minimum free energy (mfe) folding of secondary P=1 - P=0 P=1/3 ~ P=1
structures is a consequence of the following relation ofrthabers beais\ - B - P=1/2
of RNA secondary structures ovemucleotidesSz(n), [33] - P=3/8 P=2/3 P=0
n—3 ‘ P=0
Sa(n) = Sa(n—1)+ Y Sa(n—2—7)S2(j),  [1] w P=0 |
j=0 P=1/8 P=0
whereSs(n) = 1for0 < n < 2. Accordingly, RNA secondary struc- p—0 — g — @8 — 80 —¢
tures satisfy a constructive recursion. As mentioned ajtie rela- 1R/ R 14218V (D[ (4 91+ <
tion suggests the DP-recursions used for the polynomia fotding m P=T"(BI13)(3/8)"(2/3)"(1/2)"1=113
of secondary structures [24] and has therefore profoundrigtgnic o

implications. The uniform generation of RNA secondarystinesis  Fig. 5. Unifc1>rm éenératic;n: the stochastic process over shapp}, @isam-

wellknown [32] and can be derived in linear time, using tleaiework  pling path (middle) and its pseudoknot structure (bottorfhe transition

of Flajoletet al. [4]. probabilities are computed in Theorem 2 as a pre-processang
k-noncrossing RNA structures [15, 16], akenoncrossing dia-

grams without arcs of the forifi, s 4+ 1) and represent a natural gen-

2 | www.pnas.org/cgi/doi/10.1073/pnas.0709640104 Footline Author



The key observation is that the generating function of thesks

is D-finite or equivalently,P-recursive [29]. This means, there exists empty shape, consider the sequefegn — 1, . . .,

a finite recurrence relation with polynomial coefficienteg<Corol-
lary 1. Consequently, theumbersof these walks can be derived in
linear time and these allow us to compute the transition giodb
ties of the process displayed in Fig. 5. The implication isf@und:
the transition probabilities can be derived as a pre-pingsstep
in polynomial time after which a pseudoknot structure camgyéeer-
ated uniformly in linear time. Indeed, each structure iseyated by
the stochastic process having exaetlgteps each of which requiring
constant time.

From structures to lattice paths and back

In this section we translate RNA pseudoknot structures liatiice
paths. For this purpose we introduce shapesableaux and the
Robinson-Shensted-Knuth (RSK) algorithm [30].

A shape is a collection of squares arranged in left-justifads
with weakly decreasing number of boxesin each row. A Youbtgtzu
is a filling of these squares by numbers which is weakly desinga
in each row and strictly decreasing in each column«-fableaux of
shape\™ is a sequence of shapes= X%, A', ..., \" such that for
1 < i<mn, \'is obtained from\i~! by either adding/removing one
square or doing nothing (hesitating step), see Fig. 6.

;zs»[]»[[]»B] EB»EP»[[] »D]»E}]»B»[]»gﬁ

1 2 6 7 10

¢»D»EI]»EP EB»EEP BZD%EED —» [O—0—+¢

10
Fig. 6. *-tablaux W|th (top) and W|thout (bottom) hesnatlng step’she hes-
itation step in the top is a6, 7), In Fig. 9 we show how the top-tableaux
induces a uniqué&-noncrossing structure.

From k-noncrossing structuresto x-tableaux: starting with the
1) and do the fol-
lowing:

e if j is the endpoint of an ar@, j), then RSK-insert

e if j is the startpoint of an arg, s), then remove the square contain-
ing j.

o if j is an isolated point, then do nothing, see Fig. 8.
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Fig. 8 From k- noncrosssmg dlagrams to *-tableaux usmg RSK insertion of the
origins of arcs and removal of squares at the termini. Here we generate the
*-tableaux in the top of Fig. 6.

From x-tableaux to k- noncrossmg structures: Given a -
tableaux of empty shapég, \*, ..., \" "1, @), reading\® \ \*™*
from left to right, at steq, we do the foIIowmg
o for a 4+[J-step we insert into the new square
o for a @-step we do nothing _

o for a—[J-step we extract the unique entyy;), of the tableaud™*,
which via RSK-insertion intd™ recovers it (Fig. 7). The latter ex-

The RSK-algorithm is a procedure which row-inserts elementtractions, see Fig. 7, generate the arc{get;(4)) | i is a—O-steg

into a Young tableau]". Suppose we want to inserintoT". LetT; ;
denote the element in thith row and;jth column. Letj be the largest
integer such thely ;1 < k. (If Th,1 > k, thenj = 1.) If T} ; does
not exist, then simply adé at the end of the first row. Otherwise, if
T,; exists, then replac&; ; by k. Next insertT; ; into the second
row following the above procedure and continue until an eetnis
inserted at the end of a row, see Fig. 7.

>
—
Inverse RSK [3]4]

sequence: 3,4,1,2,5

4 EE 4 B2 g

RSKinsert & _, z] _p [BT4] —> [1]2]
[3]4]

Fig. 7. The RSK-algorithm and its |nverse Flrst we extract via theeise

RSK and then reinsert using RKS, recovering the originalngptableau. Be-
low it is the origins of arcs that are RSK inserted and exibastappear when
squares are removed.

of ak-noncrossing diagram, see Fig. 9
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Fig. 9. From =-tableaux to partial matchings. If A¢ \ )\ffl = fEI,_ then the
unigue number is extracted, which, if RSK-inserted into A?, recovers A\*~1. This
yields the arc-set of a k-noncrossing, partial matching.

Therefore, each-tableaux of length, containing shapes with at

The RSK-algorithm has also an inverse. Suppose we are givenost(k — 1)-rows, corresponds uniquely tokanoncrossing partial

two shapes\’ C \*~!, which differ by exactly one square. L&t
andT; be Young tableaux of shapé~! and )\, respectively. Then
there exists a uniqugcontained irf;—, and a unique tabledl; such
thatT;_; is obtained fronil; by insertingj using the RSK-algorithm,
see Fig. 7.

matching onn] [3]. We denote the numbers eftableaux and those
without hesitating steps (oscnlatlng tableaux) of shapand length
(n — 1), by O (\",n — i) andO% (\*,n — i), respectively.

We are now ready to describe the correspondence between dia-

grams anck-tableaux due to [3].

Footline Author
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Reflection and D-finiteness

The reflection principle [25, 5, 19] is a powerful technigneeombi-
natorial enumeration. However, it is not directly applieato RNA
pseudoknot structures. Additional arguments [15] are edeor
dealing with the non-reflectable, minimum arc-length ctindi see
Lemma 1. )

Given ax-tableaux of shapg, (\");_,, we consider the number
of squares in theth row of shape\’, denoted byc;(i). It is evident
that ax-tableaux of shap# with at most(k — 1) rows uniquely corre-
sponds to a walk of lengthwhich startsat = (k—1,k—2,...,1)
and ends ab = (k — 1 + z1(n),...,1 + zx—1(n)) having steps
0,+e;, 1 <i<k—1suchthal < z,_; < ... < z1 at any step,
see Fig. 10. That is, &-tableaux of shapa with at most(k — 1)
rows corresponds to a lattice pathZfi—* that remains in the interior
of the dominant Weyl chamber [5].

VOV VOV 0V 0V — g B»Bj»[t]»[]a[]»gs

1 2 3 4 5 6 7 1 2 3 4 5 6 7
A

3

2 »

1 > > 0 0. 00 -0 -0 ¢ s

0 1 2 3 4
Fig. 10. From diagrams to lattice paths. A 3-noncrossing diagram is translated
into a sequence of shapes (x-tableaux) which in turn induces a walk that stays in
the dominant Weyl-chamber of Z?2 starting and ending at (2, 1).

Fora,b € Z*~', letT'(a,b) denote the set of walks witho0t
steps of lengtm. Clearly, T (a,b) = O%(\, n), where\ represents
the unique shape with at mogt — 1) rows that corresponds to the
lattice pointb € Z*~!. Let I.(2z) denote the hyperbolic Bessel
function of the first kind of order.

Using the reflection principle, Grabiner [8] derived thedaling
relation between the generating function and a determiofaBessel
functions

Do T0(a,b) % = detllu,s,; (22) = Loy, (20)][E521.

n>0

[2]

In [15] it is shown, using eq. (2), that fdr > 2, the numbers of
k-noncrossing RNA pseudoknot structures with minimum arggth
2, Sk(n), are P-recursive and given by

> (—1>b<";b> Oi(@’n—2b),  [3]

b< 5]

Sk(n)

whereOj (A, n — i) satisfies
Y2 (50NN n — i —21),
for (n — ¢) even

Yo (5O n —i — 21— 1),
for (n — 7) odd.

Or(\'\n—i) = [4]

Corollary 1. For fixed shape\ with at mostk — 1) rows andn € N,
there exists somsr € N and polynomialgpg(n), ..., pm(n) such
that

P (n)OR(A, 4+ m) + - - + po(n)O%(\, n) = 0. [5]

In particular, the number©? (), n) can be computed i®(n) time.

We remark, that for fixech and )\, the derivation of eq. (5) is
a pre-processing step. It has to be derived only once, foarice
employing Zeilberger’s algorithm [38, 27]. The recursiaigorol-
lary 1 can be found empirically with the MAPLE packagfun using
the command isttorec.

Theorem 2. A randomk-noncrossing structure can be generated, af-
ter polynomial pre-processing time, with uniform probéiiin lin-
ear time. The algorithmic implementation, see Algorithmhas
O(n**1) pre-processing time and(n*) space complexity. Each
k-noncrossing structure is generated witf{n) space and time com-
plexity.

LetW; (A%, n — 1) denote the number eftableaux of shapa® with

at most(k — 1) rows of length(n — 7) that do not contain any
(+0,, —0O1)-steps, then we have

Algorithm 1.
1: PShape « ArrayP(n,k) (computation 00} (\*,n — 1), i =
0,1,...,n— 1,29 _
2 : SShape — ArrayS(n,k) (computation oV} (\j, n—1i), j =
0,1t 17,...,(k—-D " (k—1)";i=0,1,...,n—

1, stored in thek x n array SShape)

3 :whilei < ndo

4: flag—1 )

5: X[0] —Wi(Agtt,n— (i +1))

6: X[A]—Wi(AEhn— (i +1)) = Wi\ n — (i +2))

7. if flag=0 and ]=2then

8: X[2]—0

9: €se _

10: X[2]« Wi(AT n— (i + 1))

11: endif

12:  sum«— X[O]+X[1]+X[2]

13: forjfrom2tok —1do

14:  X[2j-1] < W,:(A;il, n—(i+1))

15: X2l = Wi\ n—(i+1))

16 : sum—sum+X[2j-1]+X[2]]

17: end for

18 : Shape— Random(sum) Random generates the random
shapeX’*! with probability X[j]/sum)

19: de—i+1

20: if Shape 3\, then

21 : flag<— 0

22: endif

23: InsertA’"" into Tableaux

24 : end while

25 : Map(Tableaux)

We remark that fok = 3, explicit formulas based on the work
of [19, 6, 7] allow us to derive the transition probabilitidisectly.

Conclusion
This paper provides an interpretation of RNA pseudoknatcstires

As aresult, the number d@f-noncrossing RNA pseudoknot structures as sampling paths of a Markov process. This point of view has t

can be derived from the quantiti€,(\’, n), given by eq. (2).

Uniform generation

Eqg. (2), combined with the fact that-finite functions form an algebra
[29] implies, that the ordinary generating functidn ., % (a,b)z"

is D-finite. SinceD-finiteness is equivalent to the-recursiveness
[30] of its coefficients, we derive

4 | www.pnas.org/cgi/doi/10.1073/pnas.0709640104

potential to offer radically new ways of dealing with the gaex
cross-serial interactions in RNA molecules.

It is not obvious that cross-serial interactions can beesged in
terms of a Markov process, since the latter are by constmdtical,
having no memory of the sampling path, except of the last step
construction showsvhy this is the case(k — 1)-crossings in RNA
molecules can be expresdedally by a(k — 1)-row of squares in the
associated shape-sequence. This locality holds for arpikr. The

Footline Author



conclusion that cross serial interactions are indeed isgdod news
for designingab initio folding algorithms.

The framework presented here is a stepping stone towards the

sampling with non-uniform transition probabilities. Theaform sam-
pling of pseudoknot structures, compatible to a given secgleis
displayed in Fig. 11. Here we insert the nucleotides intostipgares
and in analogy to Theorem 2 consider compatible paths, llyesam-
pling uniformly. Forinstance, Theorem 2 immediately altokw sam-
ple sequence-speciflocally uniformlyin linear time, by setting all
incompatible uniform transition probabilities to zero aedcale.

A G U C C
P=0 )
& (0) P=/1/2
P=3/6 (112) oo
s ( (5113) -

p= i’ P=0 @
(0) P=12\_ F7]
P=3/6 (1/2) )
@13\ p=gz N\, P P=0
(317) () P=0 )

(0)

o P=0

= = P=0

(0 © 0)
b —> A —> — — — &

E=

/7(\ P=1%(3/6)*(213)"(1)"(1/2)*1=1/6

4 4 4 v v

A G U C c
Fig. 11. Sequence specific, uniform and locally uniform sampling &fAR
pseudoknot structures. Here we display the two samplingnvar for the

sequencAGUCC.

Lemma 1. Let\‘ be an arbitrary shape with at mogk — 1) rows,
then

i O (n—i)—b\ v i .
Wk(/\,n—z)—Z(—l)b< ) )Ok()\,n—z—Qb). [6]

Let Q5 (MY, n — 4, 7) denote the set of-tableaux of shapa® of
length(n — ¢) having at mostk — 1) rows containing exactly pairs
(+D17 _Dl) and SeQZ()\Z,’I’L - Z7.]) = |QZ(>\I,’I’L - Zv.])'

Proof: Let (A*){"?") " be ax-tableaux of shapa’. We select
from the set{0, ..., (n — 2b) — ¢ — 1} an increasing sequence of
labels(ri,...,ry). For eachrs we insert a pai(+0:, —0;) after
the corresponding shap€*, see Fig. 12. This insertion generates a
x-tableaux of lengtl{n — ¢) of shape\’.

¢ O [M
2 Ps

FlE@ &

Ha -0

Ly

7 -0

@ -0

A

VA S s x s A X
Fig. 12. lllustration of the proof idea: pairs (4[J1, —Cy) are inserted at posi-
tions 3, 5 and 8, respectively.

Considering the above insertion for all sequer(egs. . ., ), we
arrive at a familyF; of x-tableaux of lengtlin — ¢) containing at least
b pairs,(+01, —01). Since we can insert at any position< h <
((n—1i)—2b—1), F has cardinality ") ~*) O5(\", n — i — 2b).
By construction, eack-tableaux \*)"Z} € F, that exhibits exactly

It is also possible to assign transitions that induce bas®s pa ; pajrs(+0,, —;) appears with multiplicity(?), whence

(i.e. extractions) particular weights. This leads to thergg based

sampling of pseudoknot structures, which can be made codeex

pendent along the lines of [37]. Stacking bonds could beuuted
as well in our framework. Higher-order Markov processesuraly
model the dependencies of adjacent arcs.

Since our approach is path-based, it offers the possikditfypr-
malize the kinetics of the folding. In addition, we can getiiee a
class of stochastic CFG-foldings for RNA secondary stmes(i14].
Examining a set of known molecular foldings, it is now potsito
derive the maximum likelihood estimators of the model patars
[23] and to fold pseudoknot structures using hidden Markadets
[21]. One important advantage of this approach is to avojlieix
knowledge of the energy parameters of pseudoknot-loops.

Our algorithm is availabfein C and in MAPLE.

Proof of the main result
A 1-arc corresponds to a subsequence of shapgs\i™!, Ait2 =

> <Z> Q (N, n—i,j) = <(” _;) - b) 0} (\', n—i—2b). [7]
j=b

We considerFy(z) = > .., Qi(A\',n — i,5)z’. Taking the
bth derivative and settingr = 1 we obtain & Ff(1) =
s (2) Qi(A',n — 1, §)17~" and computing the Taylor expansion
of Fi(z)atz =1

Fiw) = 37 5 (1) (@ — 1)

n;i )
- <(”_Z)_b> O5(A\',n —i—2b) (z — 1)".
b=0
SinceW; (A", n — 1) = Qi(\',n — 4,0) is the constant term of

"), obtained by first adding and then removing a square in the firs" (=), the lemma follows.

row. This sequence corresponds to a pair of stefis:, —J, ), where

Proof of Theorem 2: The idea is to interpret-tableaux with-

+0; and—0J; indicate that a square is added and subtracted in th@ut pairs of steps(+0;, —1), (good «-tableaux) as paths of a

first row, respectively. In terms ef-tableaux having at mogk — 1)
rows, eg. (3) can be rewritten as follows

n

Wi (2%, n) = i(—nb <” Y b) 0;(2°,n — 2b).

b=0

In order to prove our main result we have to generalize tHation
from the empty shapez to arbitrary shapes).

Footline Author

stochastic process. To this end, we index the shages ac-
cording to their predecessors: let= 0,1,...,n — 1 andj €
{0,17,17,...,(k = 1)*,(k — 1)~ }. Setting\] = o, we write
/\é“, if A*t! is obtained via

e doing nothing £5™") A

e adding a square in thgh row ()\;jl)

o deleting a square in thgth row (\/7).

1http ://www.combinatorics.cn/cbpc/unif.html
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With this notation, the number of goodtableaux of shapa!** of
length(n — (i + 1)) is given as follows:
VIO (1)) = Wi (A e (1) ~WE (A2, n(i42)).
In order to derive transition probabilities, we establislo equations:
first, for any\%, wherej # 17, we haveWy (\j,n — i) =
Vi n— i+ 1) + Wi\ n— (i + 1)) +
k—1
S0 (Wi = (4 1) + Wi n = (4 1)) +
h=2
Wi n = (i 4 1)
and second, in case ¢f= 17, we haveV,*;(/\j+ ,n—1i)=
Vit = (i +1) + Wi(Ag = (i + 1))
k—1
3 (WZ(A;T, n—(i+1)+ Wi\t n— (i + 1))) .
h=2
We are now in a position to specify the procéss )™ :
e X' =X"=g andX" is a shape having at mo§t — 1) rows
efor0 <i<n-—1,X"andX"*! differ by at most one square
o there exists no subsequendg, X‘+! X2 = X* obtained by
first adding and second removing a square in the first row
eforj £ 1"

Wi n=(i+1))

LT forl # 17
P(Xi+1 — it |Xi _ )\i_) _ Wi (A5 ,n—i) ) #
1 J Vi n—(i+1)) ‘ :
W, orl=1
[8]
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VRV T
PXT =N X =0) = forl#17,1-
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— T fori=17.
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computeO)(\*, n — i) in O(n) time. Consequently, we can gener-
ate the array$Oj. (A, n — 1)) yi ,_; and (Wi (X, n — i) i ,_; iN
O(n?) + O(n*) O(n*~1) time andO(n*) space.

A random k-noncrossing structure is then generated as- a
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1)) i n—; With O(n) time and space complexity. d
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