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Abstract

A tangled diagram on [n] = {1, . . . , n} is a labeled graph for which each vertex
has degree at most two. The vertices are arranged in increasing order on a horizontal
line and the arcs are drawn in the upper halfplane with a particular notion of
crossings and nestings. Generalizing the construction of Chen et al., we give a
bijection between generalized vacillating tableaux with less than k rows and k-
noncrossing tangled diagrams. We show that the numbers of k-noncrossing and
k-nonnesting tangled diagrams are equal and we enumerate k-noncrossing tangled
diagrams. Finally, we show that braids, a special class of tangled diagrams, facilitate
a bijection between 2-regular k-noncrossing partitions and k-noncrossing enhanced
partitions.

1 Introduction

In this paper, we study k-noncrossing tangled diagrams by generalizing the concept of
vacillating tableaux introduced by Chen et al. [3] for k-noncrossing partitions and match-
ings. A set partition (partition) gives rise to an edge set obtained by connecting the
elements in each block in numerical order. The latter is called the standard represen-
tation of a partition. A partition is called k-noncrossing if there does not exist any k

arcs (i1, j1), (i2, j2), . . . , (ik, jk) such that i1 < i2 < · · · < ik < j1 < j2 < · · · < jk. A
k-noncrossing matching is defined accordingly, since a matching is simply a partition in
which all blocks have sizes two. We first discuss tangled diagrams in relation to partitions
and matchings and put our results into this context. Second, we give some background
on tangled diagrams. A tangled diagram on [n] is a labeled graph on the vertices 1, . . . , n,
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drawn in increasing order on a horizontal line. The arcs are drawn in the upper halfplane.
In general, a tangled diagram has isolated points and the following types of arcs:

i i j i i1 j j1 i i1 j j1

i j h i j h i j i j

i j j1 i i1 j i j j1 i i1 j

For instance,

1 2 3 4 5 6 7 8 9 101 2 3 4 5 6 7 8 (1.1)

are two tangled diagrams. Tangled diagrams in which all vertices of degree two, j, are
either incident to loops (j, j), or crossing arcs (i, j) and (j, h), where i < j < h, are
called braids. For example, the first tangled diagram of (1.1) is a 3-noncrossing braid.
A matching on [2n] = {1, 2, . . . , 2n} is a 1-regular tangled diagram. For instance, the
matching {(1, 8), (2, 6), (3, 10), (4, 5), (7, 9)} is the first tangled diagram in (1.2). The
standard representation of a partition is a tangled diagram. For example, the tangled
diagram induced by π = 1457-26-3 is the second tangled diagram of (1.2). In the standard
representation of a partition any vertex of degree two, say j, is incident to the noncrossing
arcs (i, j) and (j, s), where i < j < s.

1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 (1.2)

Chen et al. observed that there is a bijection between vacillating tableaux and par-
titions [3]. In addition they studied enhanced partitions via hesitating tableaux. For a
partition P , the enhanced standard representation is defined as the union of the standard
representation and the set of loops {(i, i) | i is isolated in P}. Furthermore an enhanced
k-crossing of P is a set of k edges (i1, j1), . . . , (ik, jk) of the enhanced representation of P
such that i1 < i2 < · · · < ik ≤ j1 < j2 < · · · < jk. Via tangled diagrams we shall integrate
the concepts of vacillating and hesitating tableaux. A generalized vacillating tableaux V 2n

λ

of shape λ and length 2n is a sequence (λ0, λ1, . . . , λ2n) of shapes with certain properties.
We have λ0 = ∅, λ2n = λ and (λ2i−1, λ2i) is derived from λ2i−2, for 1 ≤ i ≤ n, by an
elementary move defined as follows:
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(∅,∅): do nothing twice; (−�,∅): first remove a square then do nothing; (∅,+�): first
do nothing then add a square; (±�,±�): add/remove a square at the odd and even steps,
respectively.

For instance, the sequence below is a generalized vacillating tableau:

∅

�
−� �

−�

∅ ∅ ∅

︷ ︸︸ ︷
(+�, +�)

�+� �+� �+� �
−� �

−� �+� �
−� �+� �∅ �+� �

−� �+� �+� �
−� �∅ �∅ �

−� �∅

︷ ︸︸ ︷ ︷ ︸︸ ︷ ︷ ︸︸ ︷ ︷ ︸︸ ︷ ︷ ︸︸ ︷ ︷︸︸︷ ︷ ︸︸ ︷ ︷ ︸︸ ︷ ︷ ︸︸ ︷
(+�,−�) (−�, +�) (−�, +�) (∅, +�) (−�,−�) (−�, +�) (+�,−�) (∅, ∅) (−�, ∅)

We give a bijection between V 2n
∅

, referred to from now on as simply vacillating tableaux,
and tangled diagrams on [n]. In fact, we show that there is a bijection between k-
noncrossing and k-nonnesting tangled diagrams and we enumerate k-noncrossing tangled
diagrams. Restricting this bijection we recover three correspondences: the bijection be-
tween vacillating tableaux with elementary moves {(−�,∅), (∅,+�)} and matchings [3],
the bijection between the vacillating tableaux with elementary moves {(−�,∅), (∅,+�),
(∅,∅), (−�,+�)} and partitions and finally the bijection between the vacillating tableaux
with elementary moves {(−�,∅), (∅,+�), (∅,∅), (+�,−�)} and enhanced partitions.
The latter induces a natural bijection between 2-regular k-noncrossing partitions and
k-noncrossing enhanced partitions induced by contracting the arcs. This bijection is mo-
tivated by the reduction algorithm for noncrossing partitions given by Chen et al. [4].

1.1 Motivation of tangled diagrams

Tangled diagrams allow us to express intramolecular interactions of RNA molecules. One
central problem in structural biology is that of predicting the spatial configuration of a
molecule. For RNA this means to understand the configuration of the primary sequence
composed by the four nucleotides A, G, U and C. These nucleotides can form Watson-
Crick (A-U, G-C) and (U-G) base pairs, as well as hydrogen bonds. The formation
of these bonds stabilizes the molecular structure. Each nucleotide can form at most two
chemical bonds and the latter cannot arbitrarily cross each other. Accordingly, RNA
molecules form helical structures which, in many cases, determine their function. For
prediction algorithms that compute for a given sequence the configuration of minimum
free energy, it is of vital importance to design combinatorial frameworks which facilitate
the systematic search of the configuration space. For a particular class of RNA structures,
the pseudoknot RNA structures [8], partial matchings with certain arc-length conditions
[7] were used to translate the biochemistry of nucleotide interactions [1] into crossings
and nestings. In addition to crossings and nestings, constraints on the minimum length
of bonds are typical. Tangled diagrams suit the purpose for expressing all intramolecular
bonds and provide the combinatorial framework vital for efficient prediction algorithms.
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2 Tangled diagrams and vacillating tableaux

2.1 Tangled diagrams

A tangled diagram is a labeled graph, Gn, on [n] with vertices of degree at most two.
It is represented by drawing its vertices on a horizontal line and its arcs (i, j) in the
upper halfplane having the following properties: two arcs (i1, j1) and (i2, j2) are crossing
if i1 < i2 < j1 < j2, (i1, j1) and (i2, j2) are nesting if i1 < i2 < j2 < j1. Two arcs (i, j1)
and (i, j2) and j1 < j2 (with common left-endpoint) can be drawn in two ways: if (i, j1) is
drawn strictly below (i, j2) then (i, j1) and (i, j2) are called nesting (at i) and otherwise
we call (i, j1) and (i, j2) crossing:

i j1 j2 i j1 j2

The case of two arcs (i1, j), (i2, j), where i1 < i2 (with common right-endpoint) is given
by:

i1 i2 j i1 i2 j

In case of a pair of arcs with common endpoints i and j, we have:

i j i j

Suppose that i < j < h and that we are given two arcs (i, j) and (j, h). Then we can
draw them intersecting once or not. In the former case (i, j) and (j, h) are crossing:

i j h i j h

The set of all tangled diagrams on [n] is denoted by Gn. A tangled diagram is k-noncrossing
if it does not contain any k mutually crossing arcs and k-nonnesting if it does not contain
any k mutually nesting arcs.

2.2 Inflation

In this section we introduce the “local” inflation of a tangled diagram. Intuitively, a
tangled diagram with ` vertices of degree two is expanded into a partial matching on n+`

vertices. For this purpose, we consider the following linear ordering on {1, 1′, . . . , n, n′}

1 < 1′ < 2 < 2′ < · · · < n < n′. (2.1)
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Let Gn be a tangled diagram with exactly ` vertices of degree two. Then the inflation of
Gn, η(Gn), is a labeled graph on {1, . . . , n + `} vertices with degree less or equal to one,
obtained as follows:
Suppose first we have i < j1 < j2. If (i, j1), (i, j2) are crossing, then we map ((i, j1), (i, j2))
into ((i, j1), (i

′, j2)) and if (i, j1), (i, j2) are nesting then ((i, j1), (i, j2)) is mapped into
((i, j2), (i

′, j1)). That is, we have the following situation:

i j1 j2

-

i i′ j1 j2

-

i j1 j2 i i′ j1 j2
(2.2)

Second let i1 < i2 < j. If (i1, j), (i2, j) are crossing then we map ((i1, j), (i2, j)) into
((i1, j), (i2, j

′)). If (i1, j), (i2, j) are nesting then we map ((i1, j), (i2, j)) into ((i1, j
′), (i2, j)),

i.e.:

i1 i2 j i1 i2 j j′ i1 i2i1 i2 j j j′

--

(2.3)

Suppose next we have i < j. If (i, j), (i, j) are crossing arcs, then ((i, j), (i, j)) is mapped
into ((i, j), (i′, j ′)) and if (i, j), (i, j) are nesting arcs, then we map ((i, j), (i, j)) into
((i, j ′), (i′, j)). Finally, if (i, i) is a loop we map (i, i) into (i, i′):

- - -

i j i i′ j j′ i j i i′ j j′ i i i′ (2.4)

Finally, suppose we have i < j < h. If (i, j), (j, h) are crossing, then we map ((i, j), (j, h))
into ((i, j ′), (j ′, h)) and we map ((i, j), (j, h)) into ((i, j), (j ′, h)), otherwise. That is we
have the situation:

j h i j j′ h i j j′h i j h

- -

i
(2.5)

Identifying all vertex-pairs (i, i′) recovers the original tangled diagram and we have the
bijection

η : Gn −→ η(Gn). (2.6)

By construction, η preserves crossings and nestings, respectively. Equivalently, a tan-
gled diagram Gn is k-noncrossing or k-nonnesting if and only if its inflation η(Gn) is
k-noncrossing or k-nonnesting, respectively. For instance, the inflation of the second
tangled diagram in (1.1), is given by:

-�

1 2 3 4 5 6 7 8 9 10 1 1′ 2 2′ 3 3′ 4 4′ 5 6 6′ 7 7′ 8 8′ 9 10
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2.3 Vacillating tableaux

A Ferrers diagram (shape) is a collection of squares arranged in left-justified rows with
weakly decreasing number of boxes in each row. A standard Young tableau (SYT) is
a filling of the squares by numbers which is strictly decreasing in each row and in each
column. We refer to standard Young tableaux as Young tableaux. Elements can be
inserted into SYT via the RSK-algorithm [11]. We will refer to SYT simply as tableaux.
The following lemma [3] is instrumental for constructing the bijection between vacillating
tableaux and tangled diagrams.

Lemma 2.1. Suppose we are given two shapes λi ( λi−1, which differ by exactly one
square. Let Ti−1 and Ti be SYT of shape λi−1 and λi, respectively. Then there exists a
unique j contained in Ti−1 and a unique tableau Ti such that Ti−1 is obtained from Ti by
inserting j via the RSK-algorithm.

Proof. First, let us assume that λi−1 differs from λi by the rightmost square in the first
row. Suppose this square contains the entry x. Then x is the unique element of Ti−1

which, if RSK-inserted into Ti, produces the tableau Ti−1. Second, suppose the square
which is being removed from λi−1, is at the end of row ` and contains the entry x. Then we
remove the square and RSK-insert x into the (`− 1)-th row in the square which contains
y, such that y is maximal subject to y < x. Therefore, if we RSK-insert y into row (`−1),
it would push down x in its original position. Since each column is strictly increasing,
such an y always exists. We conclude by induction on ` that this process results in exactly
one element j being removed from Ti−1 and a filling of λi, i.e. a unique tableau Ti. By
construction, the RSK-insertion of j recovers the tableaux Ti−1.

Below is an illustration of Lemma 2.1:

Ti−1

1 3
2
4

5

λi

` = 3, x = 4

- -
4 5

` = 2, y = 2

2 3
4 5

` = 1, y = 1

Definition 2.2. A vacillating tableau V 2n
λ of shape λ and length 2n is a sequence (λ0, λ1,

. . . , λ2n) of shapes such that (i) λ0 = ∅ and λ2n = λ, and (ii) (λ2i−1, λ2i) is derived
from λ2i−2, for 1 ≤ i ≤ n, by one of the following operations: (∅,∅): do nothing twice;
(−�,∅): first remove a square then do nothing; (∅,+�): first do nothing then adding
a square; (±�,±�): add/remove a square at the odd and even steps, respectively. We
denote the set of such vacillating tableaux by V2n

λ .
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3 The bijection

Lemma 3.1. Any vacillating tableaux of shape ∅ and length 2n, V 2n
∅

, induces a unique
inflation of some tangled diagram on [n], φ(V 2n

∅
). Namely, we have the mapping

φ : V 2n
∅

−→ η(Gn). (3.1)

Proof. In order to define φ, we recursively define a sequence of triples

((P0, T0, V0), (P1, T1, V1), . . . , (P2n, T2n, V2n)), (3.2)

where Pi is a set of arcs, Ti is a tableau of shape λi, and Vi ⊂ {1, 1′, 2, 2′, . . . , n, n′} is a set
of vertices. P0 = ∅, T0 = ∅ and V0 = ∅. We assume that the left- and right-endpoints of
all Pi-arcs and the entries of the tableau Ti are contained in {1, 1′, . . . , n, n′}. Once given
(P2j−2, T2j−2, V2j−2), we derive (P2j−1, T2j−1, V2j−1) and (P2j , T2j, V2j) as follows:
(∅,∅). If λ2j−1 = λ2j−2 and λ2j = λ2j−1, then we have (P2j−1, T2j−1) = (P2j−2, T2j−2),
(P2j , T2j) = (P2j−1, T2j−1), V2j−1 = V2j−2 ∪ {j} and V2j = V2j−1.
(−�,∅). If λ2j−1 ( λ2j−2 and λ2j = λ2j−1, then T2j−1 is the unique tableau of shape λ2j−1

such that T2j−2 is obtained by RSK-inserting the unique number i into T2j−1, P2j−1 =
P2j−2 ∪ {(i, j)}, (P2j, T2j) = (P2j−1, T2j−1), V2j−1 = V2j−2 ∪ {j} and V2j = V2j−1.
(∅,+�). If λ2j−1 = λ2j−2 and λ2j ) λ2j−1, then (P2j−1, T2j−1) = (P2j−2, T2j−2), P2j =

P2j−1 and T2j is obtained from T2j−1 by adding the entry j in the square λ2j \ λ2j−1,
V2j−1 = V2j−2 and V2j = V2j−1 ∪ {j}.
(−�,+�). If λ2j−1 ( λ2j−2 and λ2j ) λ2j−1, then T2j−1 is the unique tableau of shape

λ2j−1 such that T2j−2 is obtained from T2j−1 by RSK-inserting the unique number i. Then
we set P2j−1 = P2j−2 ∪ {(i, j)}, P2j = P2j−1 and T2j is obtained from T2j−1 by adding the
entry j ′ in the square λ2j \ λ2j−1, V2j−1 = V2j−2 ∪ {j} and V2j = V2j−1 ∪ {j ′}.
(+�,−�). If λ2j−2 ( λ2j−1 and λ2j ( λ2j−1, then T2j−1 is obtained from T2j−2 by adding

the entry j in the square λ2j−1 \ λ2j−2 and the tableau T2j is the unique tableau of shape
λ2j such that T2j−1 is obtained from T2j by RSK-inserting the unique number i. We then
set P2j−1 = P2j−2, P2j = P2j−1 ∪ {(i, j ′)}, V2j−1 = V2j−2 ∪ {j} and V2j = V2j−1 ∪ {j ′}.
(−�,−�). If λ2j−1 ( λ2j−2 and λ2j ( λ2j−1, let T2j−1 be the unique tableau of shape

λ2j−1 such that T2j−2 is obtained from T2j−1 by RSK-inserting i1. Furthermore, let T2j be
the unique tableau of shape λ2j such that T2j−1 is obtained from T2j by RSK-inserting i2.
We then have P2j−1 = P2j−2 ∪ {(i1, j)}, P2j = P2j−1 ∪ {(i2, j

′)}, V2j−1 = V2j−2 ∪ {j} and
V2j = V2j−1 ∪ {j ′}.
(+�,+�). If λ2j−1 ) λ2j−2 and λ2j ) λ2j−1, we set P2j−1 = P2j−2, and T2j−1 is obtained

from T2j−2 by adding the entry j in the square λ2j−1 \ λ2j−2. Furthermore we set P2j =
P2j−1 and T2j is obtained from T2j−1 by adding the entry j ′ in the square λ2j \ λ2j−1,
V2j−1 = V2j−2 ∪ {j} and V2j = V2j−1 ∪ {j ′}.
Claim. The image φ(V 2n

∅
) is the inflation of a tangled diagram.

First, if (i, j) ∈ P2n, then i < j. Second, any vertex j can occur only as either a left- or
right-endpoint of an arc, whence φ(V 2n

∅
) is a 1-diagram. Each step (+�,+�) induces a

pair of arcs of the form (i, j1), (i′, j2) and each step (−�,−�) induces a pair of arcs of
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the form (i1, j), (i2, j
′). Each step (−�,+�) corresponds to a pair of arcs (h, j), (j ′, s)

where h < j < j ′ < s, and each step (+�,−�) induces a pair of arcs of the form (j, s),
(h, j ′), where h < j < j ′ < s or a 1-arc of the form (i, i′). Let ` be the number of steps not
containing ∅. By construction each of these steps adds the 2-set {j, j ′}, whence (V2n, P2n)
corresponds to the inflation of a unique tangled diagram with ` vertices of degree two and
the claim follows.

Remark 3.2. The mapping φ: if squares are added, then the corresponding numbers are
inserted. If squares are deleted, Lemma 2.1 is used to extract a unique number, which
then forms the left-endpoint of the derived arcs.

∅ ∅ ∅1 1
1′

1 2
1′

1
1′

1′ 1′
3′

3′ 3′
4′

3′
4′

3′
4′

5 3′
4′

4′ 7′ 7′
8

8 8 8

1 1′ 2 2′ 3 3′ 4 4′ 5 6 6′ 7 7′ 8 8′ 9 10

(2, 2′)(1, 3) (1′, 4) (5, 6)(3′, 6′)(4′, 7) (7′8′) (8, 10)

0 1 2 3 4 5 6 7 8 9 10 11 12 1413 15 16 17 18 19 20

∅

Remark 3.3. As an illustration of the mapping φ : V 2n
∅

−→ η(Gn), we display all arc-
configurations of inflated tangled diagrams induced by the vacillating tableaux.

2 2′ 2 2′ 3 3′ 3 3′

3 3 3′ 3 3′ 3 3′3′

(+�,−�)

(−�,+�)

2′

1 1′
(+�,+� )

(−�,−� )
2 2′

3 3′ 2 2′

5 5′ 4 4′

1 1′

∅∅

2

∅ ∅

We proceed to construct the inverse of φ.

Lemma 3.4. Any inflation of a tangled diagram on n vertices, η(Gn), induces the vacil-
lating tableaux of shape ∅ and length 2n, ψ(η(Gn)). Namely, we have the mapping

ψ : η(Gn) −→ V2n
∅
. (3.3)
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Proof. We define ψ as follows. Let η(Gn) be the inflation of the tangled diagram Gn. We
set

ηi =

{

(i, i′), iff i has degree two in Gn,

i, otherwise.
(3.4)

Let T2n = ∅ be the empty tableau. We will construct a sequence of tableaux Th of shape
λh

η(Gn), where h ∈ {0, 1, . . . 2n} by considering ηi for i = n, n− 1, n− 2, . . . , 1. For each ηj

we inductively define the pair of tableaux (T2j , T2j−1):
(I) ηj = j is an isolated vertex in η(Gn), then we set T2j−1 = T2j and T2j−2 = T2j−1.
Accordingly, λ2j−1

η(Gn) = λ
2j

η(Gn) and λ
2j−2
η(Gn) = λ

2j−1
η(Gn) (left to right: (∅,∅)).

(II) ηj = j is the right-endpoint of exactly one arc (i, j) but not a left-endpoint, then we
set T2j−1 = T2j and obtain T2j−2 by RSK-inserting i into T2j−1. Consequently, we have
λ

2j−1
η(Gn) = λ

2j

η(Gn) and λ
2j−2
η(Gn) ) λ

2j−1
η(Gn) (left to right: (−�,∅)).

(III) j is the left-endpoint of exactly one arc (j, k) but not a right-endpoint, then first set
T2j−1 to be the tableau obtained by removing the square with entry j from T2j and let
T2j−2 = T2j−1. Therefore λ2j−1

η(Gn) ( λ
2j

η(Gn) and λ
2j−2
η(Gn) = λ

2j−1
η(Gn) (left to right: (∅,+�)).

(IV) j is a left- and right-endpoint, then we have the two η(Gn)-arcs (i, j) and (j ′, h),
where i < j < j ′ < h. First the tableaux T2j−1 is obtained by removing the square with
entry j ′ in T2j . Second the RSK-insertion of i into T2j−1 generates the tableau T2j−2.
Accordingly, we derive the shapes λ2j−1

η(Gn) ( λ
2j

η(Gn) and λ
2j−2
η(Gn) ) λ

2j−1
η(Gn) (left to right:

(−�,+�)).
(V) j is a right-endpoint of degree two, then we have the two η(Gn)-arcs (i, j) and (h, j ′).
T2j−1 is obtained by RSK-inserting h into T2j and T2j−2 is obtained by RSK-inserting i

into T2j−1. We derive λ2j−1
η(Gn) ) λ

2j

η(Gn) and λ
2j−2
η(Gn) ) λ

2j−1
η(Gn) (left to right: (−�,−�)).

(VI) j is a left-endpoint of degree two, then we have the two η(Gn)-arcs (j, r) and (j ′, h).
T2j−1 is obtained by removing the square with entry j ′ from the tableau T2j and T2j−2

is obtained by removing the square with entry j from the T2j−1. Then we have λ2j−1
η(Gn) (

λ
2j

η(Gn) and λ2j−2
η(Gn) ( λ

2j−1
η(Gn) (left to right: (+�,+�)).

(VII) j is a left- and right-endpoint of crossing arcs or a loop, then we have the two
η(Gn)-arcs (j, s) and (h, j ′), h < j < j ′ < s or an arc of the form (j, j ′). T2j−1 is obtained
by RSK-inserting h (or j in case of (j, j ′)) into the tableau T2j and T2j−2 is obtained by
removing the square with entry j (or j again, in case of (j, j ′)) from the T2j−1 (left to
right: (+�,−�)).
Therefore, ψ maps the inflation of a tangled diagram into a vacillating tableau and the
lemma follows.

Remark 3.5. An illustration of Lemma 3.4: starting from right to left the vacillating
tableaux is obtained via the RSK-algorithm as follows: if j is a right-endpoint, it gives
rise to the RSK-insertion of its (unique) left-endpoint, and if j is a left-endpoint the square
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filled with j is removed.

∅ 1 1
1′

1 2
1′

1
1′

1′ 1′

3′
3′ 3′

4′
3′

4′
3′

4′
5 3′

4′
4′ 7′ 7′

8
8 8 8∅ ∅ ∅

1 1′ 2 2′ 3 3′ 4 4′ 5 6 6′ 7 7′ 8 8′ 9 10

Theorem 3.6. There exists a bijection between the set of vacillating tableaux of shape ∅

and length 2n, V2n
∅

, and the set of tangled diagrams on n vertices, Gn,

β : V2n
∅

−→ Gn. (3.5)

Proof. According to Lemma 3.1 and Lemma 3.4, we have the mappings φ : V2n
∅

−→ η(Gn)
and ψ : η(Gn) −→ V2n

∅
. We next show that φ and ψ are indeed inverses of each other. By

definition, the mapping φ generates arcs whose left-endpoints, when RSK-inserted into
Ti, recover the tableaux Ti−1. We observe that by definition, the mapping ψ reverses this
extraction: it is constructed via the RSK-insertion of the left-endpoints. Therefore we
have the following relations

φ ◦ ψ(η(Gn)) = φ((λh
η(Gn))

2n
0 ) = η(Gn) and ψ ◦ φ(V 2n

∅
) = V 2n

∅
, (3.6)

from which we conclude that φ and ψ are bijective. Since Gn is in one to one correspon-
dence with η(Gn), the proof of the theorem is complete.

By construction, the bijection η : Gn −→ η(Gn) preserves the maximal number of cross-
ing and nesting arcs, respectively. Equivalently, a tangled diagram Gn is k-noncrossing or
k-nonnesting if and only if its inflation η(Gn) is k-noncrossing or k-nonnesting [3]. Indeed,
this follows immediately from the definition of the inflation.

Theorem 3.7. A tangled diagram Gn is k-noncrossing if and only if all shapes λi in the
corresponding vacillating tableau have less than k rows, i.e. φ : V 2n

∅
−→ Gn maps vacillating

tableaux having less than k rows into k-noncrossing tangled diagrams. Furthermore, there
is a bijection between the set of k-noncrossing and k-nonnesting tangled diagrams.

Theorem 3.7 is the generalization of the corresponding result in [3] to tangled diagrams.
Since the inflation map enables us to interpret a tangled diagram with ` vertices of degree
two on n vertices as a partial matching over n+ ` vertices, the proof is analogous.

We next observe that restricting the steps for vacillating tableaux leads to the bijec-
tions of Chen et al. [3]. Let Mk(n), Pk(n) and Bk(n) denote the set of k-noncrossing
matchings, partitions and braids, respectively. If a vacillating tableaux V 2n

∅
is obtained

via certain steps s ∈ S we write V 2n
∅

|= S.
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Corollary 3.8. Let βi denote the restriction of the bijection β : V2n
∅

−→ Gn in Theo-
rem 3.6. Then β induces the bijections

β1 : {V 2n
∅

|V 2n
∅

|= (−�,∅), (∅,+�) and has ≤ k rows} → Mk(n), (3.7)

β2 : {V 2n
∅

|V 2n
∅

|= (−�,∅), (∅,+�), (∅,∅), (−�,+�) and has ≤ k rows} → Pk(n),
(3.8)

β3 : {V 2n
∅

|V 2n
∅

|= (−�,∅), (∅,+�), (∅,∅), (+�,−�) and has ≤ k rows} → Bk(n).
(3.9)

Remark 3.9. Corollary 3.8 implies a bijection between k-noncrossing braids without iso-
lated points on [n], denoted by B†

k(n), and enhanced partitions on [n], see [3].

For partitions, we can illustrate the correspondence between the elementary steps and
the associated tangled diagram arc-configurations as follows:

2(−�,+� ) 3 3 3

For braids, we derive the following correspondences:

2 2 3 3(+�,−� )

Let tk(n) and t̃k(n) be the numbers of k-noncrossing tangled diagrams and k-nonnesting
tangled diagrams without isolated points on [n], respectively. Furthermore, let fk(2n− `)
be the number of k-noncrossing matchings on 2n − ` vertices. We show that the enu-
meration of tangled diagrams can be reduced to the enumeration of matchings via the
inflation map. Without loss of generality we can restrict our analysis to the case of tangled
diagrams without isolated points since the number of tangled diagrams on [n] is given by

tk(n) =
n∑

i=0

(
n

i

)

t̃k(n− i).

Theorem 3.10. The number of k-noncrossing tangled diagrams without isolated points
on [n] is given by

t̃k(n) =

n∑

`=0

(
n

`

)

fk(2n− `), (3.10)

and in particular for k = 3 we have

t̃3(n) =

n∑

`=0

(
n

`

) (

C 2n−`
2
C 2n−`

2
+2 − C2

2n−`
2

+1

)

. (3.11)
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Proof. Let T̃k(n, V ) denote the set of tangled diagrams without isolated points in which
V = {i1, . . . , ih} is the set of vertices of degree one (where h ≡ 0 mod 2 by the definition
of T̃k(n, V )) and let Mk({1, 1

′, . . . , n, n′} \V ′), where V ′ = {i′1, . . . , i
′
h}, denotes the set of

matchings on {1, 1′, . . . , n, n′}\V ′. By construction, the inflation η : Gn −→ η(Gn) induces
a well-defined mapping

η̂ : T̃k(n, V ) −→ Mk({1, 1
′, . . . , n, n′} \ V ′) (3.12)

with the inverse map defined by identifying all pairs (x, x′), where x, x′ ∈ {1, 1′, . . . , n, n′}\
V ′. Obviously, we have |Mk({1, 1

′, . . . , n, n′} \ V ′)| = fk(2n− h) and

t̃k(n) =
∑

V ⊂[n]

t̃k(n, V ) =

n∑

`=0

(
n

`

)

fk(2n− `). (3.13)

Suppose n ≡ 0 mod 2. Let Cm denote the m-th Catalan number. Then we have [6]

f3(n) = Cn
2
Cn

2
+2 − C2

n
2
+1. (3.14)

and the theorem follows.

As an illustration of the bijection of (3.12) we consider two 4-noncrossing tangled
diagrams, where n = 4 and V = {1, 3}:

-

-

η̂

η̂

1 2 3 4 1 2 2′ 3 4 4′

1 2 3 4 1 2 2′ 3 4 4′

Remark 3.11. Since fk(n) is D-finite [12], Theorem 3.10 implies that tk(n) is D-finite for
any k ≥ 2 [10].

The first 10 numbers of 3-noncrossing tangled diagrams are given by:

n 1 2 3 4 5 6 7 8 9 10
t3(n) 2 7 39 292 2635 27019 304162 3677313 47036624 629772754

The enumeration of 3-noncrossing partitions and 3-noncrossing enhanced partitions has
been studied by Xin and Bousquet-Mélou [2]. The authors obtain their results by solving
a functional equation of walks in the first quadrant using the reflection principle [5] and
the kernel method [9].

In order to give our bijection between 2-regular k-noncrossing partitions and braids
without isolated points, i.e. k-noncrossing enhanced partitions, we interpret the latter as
a special class of k-noncrossing partitions denoted by P∗

k(n). This bijection is obtained
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as follows: for δ ∈ B†
k(n), we identify loops with isolated points and crossing arcs (i, j)

and (j, h), where i < j < h, by noncrossing arcs. Let Pk,2(n) denote the set of 2-regular,
k-noncrossing partitions, i.e. the set of k-noncrossing partitions without arcs of the form
(i, i+ 1).

Theorem 3.12. Let k ∈ N, k ≥ 3. Then we have a bijection

ϑ : Pk,2(n) −→ B†
k(n− 1), ϑ((i, j)) = (i, j − 1). (3.15)

Proof. By construction, ϑ maps tangled diagrams on [n] to tangled diagrams on [n − 1].
Since there does not exist any arc of the form (i, i + 1), for any π ∈ Pk,2(n), ϑ(π) is
loop-free. By construction, ϑ preserves the orientation of arcs, whence ϑ(π) is a partition.
Claim 1. ϑ : Pk,2(n) −→ B†

k(n− 1) is well-defined.
We first prove that ϑ(π) is k-noncrossing. Suppose there exist k mutually crossing arcs,
(is, js), s = 1, . . . , k in ϑ(π). Since ϑ(π) is a partition, we have i1 < · · · < ik < j1 < · · · <
jk. So, we obtain for the partition π ∈ Pk,2(n) the k arcs (is, js + 1), s = 1, . . . , k where
i1 < · · · < ik < j1 + 1 < · · · < jk + 1, which is impossible since π is k-noncrossing. We
next show that ϑ(π) is a k-noncrossing braid. If ϑ(π) is not a k-noncrossing braid, then it
contains k arcs of the form (i1, j1), . . . (ik, jk) such that i1 < · · · < ik = j1 < · · · < jk. Then
π contains the arcs (i1, j1 + 1), (ik, jk + 1) where i1 < · · · < ik < j1 + 1 < · · · < jk + 1,
which is impossible since these arcs are a set of k mutually crossing arcs and Claim 1
follows.
Claim 2. ϑ is bijective.
Clearly ϑ is injective and it remains to prove surjectivity. For any k-noncrossing braid
δ there exists 2-regular partition π such that ϑ(π) = δ. We have to show that π is k-
noncrossing. Suppose that there exists some partition π with k mutually crossing arcs
such that ϑ(π) = δ. Let M ′ = {(i1, j1), . . . , (ik, jk)} be a set of k mutually crossing arcs
in the standard representation of π, i.e. i1 < · · · < ik < j1 < · · · < jk. Then we have in
ϑ(π) the arcs (is, js − 1), s = 1, . . . , k such that

i1 < · · · < ik ≤ j1 − 1 < · · · < jk − 1.

Since M = {(i1, j1 − 1), . . . , (ik, jk − 1)} is k-noncrossing, we conclude ik = j1 − 1. This is
impossible in k-noncrossing braids. By transposition, we have proved that any ϑ-preimage
is necessarily a k-noncrossing partition, whence Claim 2 and the proof of the theorem is
complete.

Here is an illustration of the above bijection:

-

j

1 2 3 4 5 6 1 2 3 4 5

1 2 3 4 5

?ϑ

the electronic journal of combinatorics 15 (2008), #R86 13



Remark 3.13. The proof of Theorem 3.12 can be generalized to a bijection between Pk(n)
and Bk(n− 1) for k ≥ 3.
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