W.Y.C. Chen, P. Paule and H.L. Saad,
Converging to Gosper's algorithm,
Adv. Appl. Math. 41 (2008) 351-364.

Cited by


  1. M.K. Abdullah, Extension of Gosper’s algorithm and greatest factorial factorization, Journal of Basrah Researches(sciences) 37 (2011), No. 4.D, 5 pp.

  2. S. Abramov and A. Gheffarm and D.E. Khmelnov, Rational solutions of linear difference equations revisited, In: Computer Algebra Systems in Teaching and Research, CASTR (2011), 5-19, 2011.

  3. A. Bostan, F. Chyzak, M. Giusti, R. Lebreton, G. Lecerf, B. Salvy and É. Schost, Algorithmes Efficaces en Calcul Formel, Electronic Draft, 2017.

  4. W.Y.C. Chen, Q.-H. Hou and H.-T. Jin, The Abel-Zeilberger algorithm, Electron. J. Combin. 18 (2011) Paper 17, 17 pp.

  5. Q.-H. Hou and Y.-P. Mu, Minimal universal denominators for linear difference equations, J. Difference Equ. Appl. 17 (2011) 977-986.

  6. Q.-H. Hou and R.-H. Wang, An algorithm for deciding the summability of bivariate rational functions, Adv. in Appl. Math. 64 (2015) 31-49.

  7. M. Kauers and C. Schneider, Partial denominator bounds for partial linear difference equations, In: Proceedings of the 2010 International Symposium on Symbolic and Algebraic Computation, ACM (2010), 211-218, 2010.

  8. M. Kauers and C. Schneider, A refined denominator bounding algorithm for multivariate linear difference equations, In: Proceedings of the 36th international symposium on Symbolic and Algebraic Computation, ACM (2011), 201-208, 2011.

  9. J. Middeke and C. Schneider, Denominator bounds for higher order systems of linear recurrence equations, ACM Commun. Comput. Algebra TBA 2016, 1-2.

  10. J. Middeke and C. Schneider, Denominator bounds for systems of recurrence equations using ∏∑-extensions, In: Advances in Computer Algebra, 149-173, Springer, 2016.

  11. H.L. Saad, Rising greatest factorial factorization for Gosper's algorithm, Basrah Journal of Science (A) 32(1) (2014) 1-12.

  12. H.L. Saad and M.E. Mohammed, Gosper's algorithm and hypergeometric solutions, Basrah Journal of Science (A) 30(1) (2012) 15-27.

  13. X. Wu, Resultant-free computation of indefinite hyperexponential integrals, In: Computer Mathematics, 427-435, Springer, 2014.