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Abstract. Riordan paths are Motzkin paths without horizontal steps on the x-axis. We
establish a correspondence between Riordan paths and (321, 31̄42)-avoiding derangements.
We also present a combinatorial proof of a recurrence relation for the Riordan numbers in
the spirit of the Foata-Zeilberger proof of a recurrence relation on the Schröder numbers.
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1. Introduction

The Riordan numbers have many combinatorial interpretations, see [1] and the On-Line
Encyclopedia of Integer Sequences [8, A005043]. For example, the n-th Riordan number
rn equals the number of plane trees with n edges in which no vertex has outdegree one,
which are called short bushes. Let Bn denote the set of short bushes with n edges (see
Figure 1). The first few Riordan numbers are 1, 0, 1, 1, 3, 6, 15, 36, 91, 232. In general, rn

is given by the formula

rn =
1

n+ 1

n−1
∑

k=1

(

n + 1

k

)(

n− k − 1

k − 1

)

, (1.1)

see [8, A005043].

The first result of this paper was motivated by the question of finding a combina-
torial interpretation of the Riordan numbers in terms of permutations with forbidden
patterns. In this aspect, we find that the Riordan numbers are closely related to the
Motzkin numbers. The authors have obtained a combinatorial proof of the fact that
permutations avoiding the patterns (321, 31̄42) are counted by the Motzkin numbers. In
this paper, we show that the Riordan number rn equals the number of derangements on
[n] = {1, 2, . . . , n} that avoid the patterns (321, 31̄42). Thus the Riordan numbers can be
considered as a derangement analogue of the Motzkin numbers.

The second result of this paper is a combinatorial proof of a recurrence relation on
the Riordan numbers in the spirit of the Foata-Zeilberger proof of a recurrence on the
Schröder numbers [6], see also [10, 11, 12].
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2. Riordan paths

In this section, we give a brief review of the Riordan numbers and the Riordan paths.
We first give a combinatorial derivation of the formula (1.1) by using the decomposition
algorithm obtained in [2]. Let Fn be the set of labelled plane trees with n edges in which
no vertex has outdegree one. Moreover, let Fn,k be the set of trees in Fn with k internal
vertices. Suppose that the set of children of each internal vertex forms a block. Using the
decomposition algorithm in [2], we obtain a bijection between Fn,k and the set of forests
with k small plane trees with n+ k vertices such that the roots of the small trees belong
to {1, 2, . . . , n+1}, and each small tree contains at least two children. Recall that a small
tree is a tree containing only the root and at least one child. So |Fn,k| can be computed
as follows: we have

(

n+1

k

)

choices for the roots, and the remaining n different labels are
partitioned into k blocks with each block containing at least two elements. Thus we have

|Fn,k| =

(

n+ 1

k

)(

n− k − 1

k − 1

)

n!,

which implies the formula (1.1) because of the relation Fn = (n+ 1)!rn.

Recall that a Motzkin path of length n is a lattice path in the plane from (0, 0) to
(n, 0), consisting of up steps U = (1, 1), down steps D = (1,−1), and horizontal steps
H = (1, 0), and never going below the x-axis [1, 5, 9]. The height of any step is defined
to be the y-coordinate of its starting point. A 2-Motzkin path is a Motzkin path where
the horizontal steps can be of two kinds: straight or wavy. Motzkin paths are counted
by the Motzkin numbers [8, A001006] and 2-Motzkin paths are counted by the Catalan
numbers [8, A000108]; see, for example, [4, 5].

The Riordan number rn counts Motzkin paths of length n with no horizontal steps of
height 0 [8, A005043]. This fact follows from a bijection of Deutsch and Shapiro between
plane trees and 2-Motzkin paths [4]. For any short bush T , let the leftmost and rightmost
edges of a vertex correspond to up and down steps, respectively, and let the remaining
edges correspond to horizontal steps. Then we obtain a Motzkin path without horizontal
steps on the x-axis by traversing T in preorder.

A Motzkin path of length n without horizontal steps on the x-axis will be called a
Riordan path of length n, and let Rn be the set of Riordan paths of length n. Figure 1 is
an illustration of the correspondence between short bushes and Riordan paths.

The Riordan numbers rn are related to the Catalan numbers cn = 1

n+1

(

2n

n

)

by the
relation

cn =
n

∑

k=0

(

n

k

)

rk, (2.1)

which leads to the following formula:

rn =
n

∑

k=0

(−1)n−k

(

n

k

)

ck. (2.2)
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Figure 1: Short bushes and Riordan paths

The above formula (2.2) has been derived by Bernhart [1] using a difference operator.
Here we present a combinatorial interpretation of (2.1).

Combinatorial Proof of (2.1). Let P = p1p2 · · · p2n be a Dyck path of length 2n. We
divide the path P into n segments Q1Q2 · · ·Qn such that Qi = p2i−1p2i. For each Qi,
there are four possible combinations: UU , UD, DU and DD. If we use the four kinds of
steps of a 2-Motzkin path to encode UU , UD, DU and DD, that is, UU is represented by
an up step, UD is represented by a wavy horizontal step, DU is represented by a straight
horizontal step, and DD is represented by a down step. Then we get a 2-Motzkin path M
without straight horizontal steps on the x-axis. Suppose M contains n−k wavy horizontal
steps. Note that if we remove all the wavy horizontal steps, we are led to a Riordan path of
length k. Conversely, given a Riordan path of length k, we can reconstruct

(

n

k

)

2-Motzkin
paths without straight horizontal steps on the x-axis by inserting n− k wavy horizontal
steps.

The above proof implies the following interpretation of the Catalan number cn =
1

n+1

(

2n

n

)

.

Corollary 2.1 The number of 2-Motzkin paths of length n without straight horizontal
steps on the x-axis equals the Catalan number cn.
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3. Riordan Paths and Derangements

In this section, we give a correspondence between Riordan paths and derangements with
forbidden patterns (321, 31̄42). This is motivated by the recent work of the authors [3] on
the bijection φ between Motzkin paths of length n and Sn(321, 31̄42), where Sn denotes the
set of permutations on [n], and Sn(321, 31̄42) denote the set of permutations avoiding the
patterns (321, 31̄42). We say that a permutation π = π1π2 · · ·πn avoids the pattern 321 if
it does not contain any subsequence πiπjπk such that πi > πj > πk for 1 ≤ i < j < k ≤ n.
Moreover, we say that π avoids the pattern 31̄42 if any subsequence πiπjπk (i < j < k)
of pattern 231, namely, πj > πi > πk, can be extended to a subsequence of pattern 3142,
in other words, there exists i < m < j such that πj > πi > πk > πm.

It was shown by Gire [7] that |Sn(321, 31̄42)| equals the Motzkin number mn (see [8,
A001006]). Authors [3] established a correspondence between Motzkin paths of length
n and reduced decompositions of permutations in Sn(321, 31̄42). In order to make a
connection between Riordan paths and permutations with forbidden patterns, we led to
the consideration of further restrictions on Sn(321, 31̄42) so that we may get a subset of
permutations Sn(321, 31̄42) that are in one-to-one correspondence with Riordan paths of
length n with m horizontal steps on the x-axis.

We now recall the definition of φ which is given in terms of reduced decompositions
of permutations in Sn.

Definition 3.1 For any 1 ≤ i ≤ n − 1, define the map si: Sn → Sn, such that si acts
on a permutation by interchanging the elements in positions i and i + 1. We call si the
simple transposition, and write the action of si on the right of the permutation, denoted
by πsi. Therefore we have π(sisj) = (πsi)sj.

The canonical reduced decomposition of π ∈ Sn has the following form:

π = (1 2 · · · n)σ = (1 2 · · · n)σ1σ2 · · ·σk, (3.1)

where
σi = shi

shi−1 · · · sti , hi ≥ ti (1 ≤ i ≤ k) and

1 ≤ h1 < h2 < · · · < hk ≤ n− 1.

We call hi the head and ti the tail of σi. For short, we say that π has the canonical reduced
decomposition σ1σ2 · · ·σk.

For example, π = 315264 has the canonical reduced decomposition (s2s1)(s4s3)(s5). It
is shown in [3] that permutations in Sn(321, 31̄42) can be characterized by their reduced
decompositions.

Theorem 3.2 Let π be a permutation in Sn with the reduced decomposition as given in
(3.1). Then π ∈ Sn(321, 31̄42) if and only if

ti+1 ≥ ti + 2, 1 ≤ i ≤ k − 1. (3.2)
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We now give a brief description of the bijection φ between Motzkin paths of length n
and Sn(321, 31̄42) by the strip decomposition of Motzkin paths [3]. This bijection involves
a labelling of the cells in the region of a Motzkin path. The region of a Motzkin path is
meant to be the area surrounded by the path and the x-axis. Furthermore, the region
of a Motzkin path is subdivided into cells which are either unit squares or triangles with
unit bottom sides. A triangular cell contains either an up step or a down step. We will
not label triangular cells containing up steps. The other types of cells, either square or
triangular, have bottom sides, say, with points (i, j) and (i+1, j), we will label these cells
with si+j or simply i+ j. We call this labelling the (x+ y)-labelling.

We now define the strip decomposition of a Motzkin path. Suppose Pn,k is a Motzkin
path of length n that contains k up steps. If k = 0, then the strip decomposition of Pn,0 is
simply the empty set. For any Pn,k ∈Mn, let A→ B be the last up step and E → F the
last down step on Pn,k. Then we define the strip of Pn,k as the path from B to F along
the path Pn,k. Now we move the points from B to E one layer lower, namely, subtract
the y-coordinate by 1, and denote the adjusted points by B′, . . ., E ′. We now form a new
Motzkin path by using the path Pn,k up to the point A, then joining the point A to B′

and following the adjusted segment until we reach the point E ′, then continuing with the
points on the x-axis to reach the destination (n, 0). Denote this Motzkin path by Pn,k−1,
which may end with some horizontal steps.

From the strip of Pn,k, we may define the value hk as the label of the cell containing
the step E → F . Clearly, we have hk ≤ n− 1. The value tk is defined as the label of the
cell containing the step starting from the point B.

Iterating the above procedure, we get a set of parameters {(hi, ti)|1 ≤ i ≤ k} satis-
fying the condition (3.2). For each step in the above procedure, we obtain a product of
transpositions σi = shi

shi−1 · · · sti . Finally we get the corresponding canonical reduced
decomposition σ = σ1σ2 · · ·σk and the corresponding permutation π = (1 2 · · · n)σ, see
Figure 2. We then obtain the following property of the bijection φ.

Theorem 3.3 The bijection φ is a correspondence between Motzkin paths of length n

with m horizontal steps on the x-axis and permutations in Sn(321, 31̄42) that have m

fixed points.

Proof. For any Motzkin path P of length n with m horizontal steps on the x-axis, label its
steps with 0, 1, 2, . . . , n− 1 from left to right. Suppose that the m horizontal steps on the
x-axis are labelled by x1, x2, . . . , xm, where 0 ≤ x1 < x2 < . . . < xm ≤ n− 1. By the strip
decomposition and the (x+y)-labelling, sx1

, sx2
, . . . , sxm

do not occur in its corresponding
canonical reduced decomposition with respect to the bijection φ. Note that a horizontal
step on the x-axis is followed by an up step or a horizontal step on the x-axis (except that
it is the last step). Thus x1 + 1, x2 + 1, . . . , xm + 1 are fixed points of the corresponding
permutation in Sn(321, 31̄42) by applying Theorem 3.2.

Corollary 3.4 For any Motzkin path P of length n, let π ∈ Sn(321, 31̄42) be its corre-
sponding permutation with respect to the bijection φ. Suppose that π has the canonical
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reduced decomposition of the form (3.1), then

1) t1 − 1 is the number of initial horizontal steps on the x-axis at the beginning of the
Motzkin path P ;

2) n − 1 − hk is the number of final horizontal steps on the x-axis at the end of the
Motzkin path P ;

3)
∑

i(ti+1 − hi − 2) equals the number of horizontal steps of the Motzkin path P on
the x-axis that are neither initial nor final steps, where summation is over all i such
that hi + 1 < ti+1.

Recall that a permutation π = π1π2 · · ·πn is said to be a derangement if π does not
have any fixed points, that is, πi 6= i for all i ∈ [n]. Let Dn(321, 31̄42) denote (321, 31̄42)-
avoiding derangements in Sn. Then we have the following correspondence.

Corollary 3.5 The bijection φ is a correspondence between Riordan paths of length n

and Dn(321, 31̄42).

For example, for the Riordan path in Figure 2, we have

P17,5 = UHHDUUHHDHUUDDHHD.

From the strip decomposition, we get the parameter set

{(3, 1), (8, 5), (12, 7), (13, 12), (16, 14)}

The canonical reduced decomposition is given below:

(s3s2s1)(s8s7s6s5)(s12s11s10s9s8s7)(s13s12)(s16s15s14). (3.3)

The corresponding permutation is

4 1 2 3 9 5 13 6 7 8 10 14 11 17 12 15 16.

1 2 3 5 6 7 8 9 10 11 12 13 14 15 16

7 8 9 12 13 14

14

14

(0,0)

Figure 2: The (x+ y)-labeling and strip decomposition
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Corollary 3.6 Let P be a Riordan path of length n. Then the area of P minus the sum
of heights of the up steps is equal to the inversion number of the permutation φ(P ) ∈
Dn(321, 31̄42).

Corollary 3.7 Let σ = σ1 · · ·σk be the canonical reduced decomposition of π ∈ Sn, where
σi = shi

shi−1 · · · sti for 1 ≤ i ≤ k. Then π ∈ Dn(321, 31̄42) if and only if t1 = 1, hk = n−1
and

hi + 2 ≥ ti+1 ≥ ti + 2, 1 ≤ i ≤ k − 1.

4. A Recurrence Relation

In this section, we give a combinatorial proof of the following recurrence relation on the
Riordan numbers:

Theorem 4.1 For n ≥ 2, we have

(n+ 1)rn = (n− 1)(2rn−1 + 3rn−2), (4.1)

with initial values r0 = 1, r1 = 0 and r2 = 1.

Proof. We proceed to establish the following bijection:

ψ : [3(n− 1)] ×Rn−2

⋃

[2(n− 1)] ×Rn−1 =⇒ [n+ 1] ×Rn, (4.2)

which yields the identity (4.1).

We begin with an interpretation of [3(n−1)]×Rn−2 as the multi-set of Riordan paths
of length n−2 in which exactly one step is labelled one of the labels a, b, and c, plus three
copies of the set of Riordan paths of length n−2 without labels. Similarly, [2(n−1)]×Rn−1

can be represented by the set of labelled Riordan paths of length n− 1 in which exactly
one step is labelled either by 1 or 2. The set [n + 1] ×Rn can be represented by the set
of Riordan paths of length n for which at most one step is labelled by the symbol ∗.

For example, since R4 = {UUDD,UDUD,UHHD}, [5]×R4 consists of the following
labelled paths:

UUDD U∗UDD UU∗DD UUD∗D UUDD∗

UDUD U∗DUD UD∗UD UDU∗D UDUD∗

UHHD U∗HHD UH∗HD UHH∗D UHHD∗.

We now give a construction of the map ψ.

(1) For the three copies of the paths in Rn−2 without labels, we respectively add
UD, U∗D and UD∗ to the beginning of the paths. In this way, we obtain all the paths
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beginning with UD in [n + 1] ×Rn. For example, for n = 4, the three copies of UD are
mapped to UDUD, U∗DUD and UD∗UD, respectively.

(2) For the paths having a step pi of height k labelled by a in Rn−2: If k = 0, namely,
pi = U , we add an up step to the beginning of the path and insert a down step following
the corresponding down step of pi, namely, the first down step after pi that touches the
x-axis. This gives all the Riordan paths of length n without labels such that there is no
horizontal steps of height 1 before the path returns to the x-axis. Otherwise, let pj be
the last up step of height k − 1 before the step pi, then we add an up step after pj and a
down step before pi and label pj with ∗. Hence we have all the Riordan paths of length
n which contain the consecutive steps U∗U . For example, UaD and UDa are mapped to
UUDD and U∗UDD, respectively.

(3) For the paths having a step pi labelled by b (or c) in Rn−2, we add U∗D (or UD∗)
after pi. In this way, we get all Riordan paths of length n containing the consecutive
steps U∗D (or UD∗) which are not at the beginning of the Riordan paths. For example,
U bD and UDb (or U cD and UDc) are mapped to UU∗DD and UDU∗D (or UUD∗D and
UDUD∗), respectively.

(4) For the paths having a step pi of height k labelled by 1 in Rn−1: If pi = D and
k = 1, then we change the corresponding up step (that is, the nearest up step before pi

that touches the x-axis) to an H step, and add an up step to the beginning of the path.
So we obtain all the Riordan paths of length n without labels such that there is at least
one horizontal step of height 1 before the path returns to the x-axis. Otherwise, we add
a horizontal step after pi, and label the new horizontal step with ∗. This yields all the
Riordan paths of length n containing H∗. For example, U1HD, UH1D and UHD1 are
mapped to UH∗HD, UHH∗D and UHHD, respectively.

(5) For the paths having a step pi labelled by 2 in Rn−1: If pi is an up step (or a down
step), then we label pi with ∗ and add a horizontal step H after pi (before pi). Thus we
obtain all the Riordan paths of length n containing the consecutive steps U∗H (or HD∗).
If pi = H , then its height is nonzero. In this case, so we may assume that pj is the first
down step after pi. Then we replace pi by U , and add a down step before pj and label pj

with ∗. So we obtain all the Riordan paths of length n containing consecutive steps DD∗.
For example, U2HD, UH2D and UHD2 are mapped to U∗HHD, UUDD∗, UHHD∗,
respectively.

In summary, we obtain all the Riordan paths in [n+ 1]×Rn. It can be seen that the
above procedure is reversible. Hence ψ is a bijection.

Note that the relation (4.1) is derived from the generating function by Bernhart [1].
Our proof is in the spirit of the Foata-Zeilberger proof of a recurrence relation on the
Schröder numbers [6], and Sulanke’s proofs of the recurrences for Schröder paths, paral-
lelogram polyominoes and Motzkin paths [10, 11, 12].
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