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Abstract

The applicability or terminating condition for the ordinary case of

Zeilberger’s algorithm was recently obtained by Abramov. For the q-

analogue, the question of whether a bivariate q-hypergeometric term has

a qZ-pair remains open. Le has found a solution to this problem when

the given bivariate q-hypergeometric term is a rational function in certain

powers of q. We solve the problem for the general case by giving a char-

acterization of bivariate q-hypergeometric terms for which the q-analogue

of Zeilberger’s algorithm terminates. Moreover, we give an algorithm to

determine whether a bivariate q-hypergeometric term has a qZ-pair.
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1 Introduction

Zeilberger’s algorithm [10,16,19], also known as the method of creative telescop-

ing, is devised for proving hypergeometric identities of the form

∞∑

k=−∞

F (n, k) = f(n),

where F (n, k) is a bivariate hypergeometric term and f(n) is a given function
(for most cases a hypergeometric term plus a constant). The algorithm can
be easily adapted to the q-case, which is called the q-analogue of Zeilberger’s
algorithm [7, 12, 15, 18]. Let N and K be the shift operators with respect to n
and k respectively, defined by

NT (n, k) = T (n+ 1, k) and KT (n, k) = T (n, k + 1).

Given a bivariate q-hypergeometric term T (n, k), the q-analogue of Zeilberger’s
algorithm aims to find a qZ-pair (L,G), where L is a linear difference operator
with coefficients in the ring of polynomials in qn

L = a0(q
n)N0 + a1(q

n)N1 + · · ·+ ar(q
n)N r

and G is a bivariate q-hypergeometric term G(n, k) such that

LT (n, k) = (K − 1)G(n, k).

Zeilberger’s algorithm has been widely used as a powerful tool to prove hyper-
geometric identities. It was an open question when the algorithm terminates.
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This problem was solved recently by Abramov [1,2]. For the q-analogue of Zeil-
berger’s algorithm, Le [13] found a solution to the termination problem for the
case of rational functions. In this paper we provide a complete solution for the
general q-case.

We begin with an additive decomposition of univariate q-hypergeometric
terms. Using this decomposition, a univariate q-hypergeometric term T (n) can
be represented as

T (n) = (N − 1)T1(n) + T2(n),

where T1(n) and T2(n) are q-hypergeometric terms, and T2(n) has the following
form

T2(n) =
u1(q

n)

u2(qn)

n−1∏

j=n0

f1(q
j)

f2(qj)
,

where u1, u2, f1, f2 are polynomials and for any integer m, u2(x) and u2(xq
m)

have no common factors except for a power of x. Consequently, a bivariate
q-hypergeometric term T (n, k) can be decomposed as

T (n, k) = (K − 1)T1(n, k) + T2(n, k) (1.1)

such that

T2(n, k) = T (n, k0)V (qn, qk)
k−1∏

j=k0

F (qn, qj),

where V, F are rational functions and the denominator v2 of V satisfies the
conditions that for any integer m, v2(x, y) and v2(x, yq

m) have no common
factors except for a power of y. The polynomial v2(x, y) with the above property
is called εy-free. We should note that the above decomposition does not solve
the minimal additive decomposition problem and is not unique (see [5] for a
precise definition). However, for the purpose of constructing a qZ-pair, it turns
out that one may choose any decomposition.

Then we consider the structure of bivariate q-hypergeometric terms. The
structure of ordinary hypergeometric terms has been studied by Ore [14], Sato-
Shintani-Muro [17], Abramov-Petkovšek [6] and Hou [11]. To a large extent, the
q-case is analogous to the ordinary case. For each bivariate q-hypergeometric
term, we associate it with a normal representation (q-NR) which consists of
four polynomials r, s, u, v. Based on the properties of the representation, we
may give a definition of q-proper hypergeometric terms and prove that under
the condition that v is εy-free, a bivariate q-hypergeometric term has a qZ-pair
if and only if it is a q-proper term. Applying the decomposition (1.1), we deduce
that for any bivariate q-hypergeometric term T , it has a qZ-pair if and only if
T2 is q-proper.

We conclude with some examples.

2 ε-Free Decomposition

Throughout the paper, we let Z,Z+ and N denote the set of integers, positive
integers and nonnegative integers, respectively. For integers (or polynomials)
a, b, we denote by gcd(a, b) the (monic) greatest common divisor of a and b. We
also write a⊥ b to indicate that a and b are relatively prime, i.e., gcd(a, b) = 1.
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Let F be a field of characteristic zero, q ∈ F a nonzero element which is not
a root of unity, and x transcendental over F. Denote by ε the unique automor-
phism of F(x) which fixes F and satisfies εx = qx. Then F(x) together with the
q-shift operator ε is a difference field [8]. Let r and s be two polynomials. We
say that r/s is ε-reduced if r⊥ ε

hs for all h ∈ Z.

To be more specific, the rational functions involved in the q-hypergeometric
terms (see Definition 2.4) are rational functions of qn. However, for a rational
function R ∈ F(x), we have

N R(qn) = R(qn+1) = εR(qn) and R(qn) = 0 ∀n ≥ n0 ⇔ R(x) = 0.

Therefore, there is a natural one-to-one correspondence between the set of ra-
tional functions of qn together with the shift operator N and the field F(x)
together with the q-shift operator ε. In this paper, we adopt the notation of
F(x) as in the work of Abramov-Paule-Petkovšek [4].

The concept of rational normal forms introduced by Abramov and Petkovšek
[5] can be extended to the q-case.

Definition 2.1 Let R ∈ F(x) be a rational function. If polynomials r, s, u, v ∈
F[x] satisfy

(i) R = r
s · ε(u/v)

(u/v) where u⊥ v and u, v have no factor x,

(ii) r/s is ε-reduced,

then (r, s, u, v) is called a q-rational normal form (q-RNF) of R.

Recall that a monic polynomial that has no factor x is called a q-monic
polynomial by Abramov, Paule, and Petkovšek [4]. The following factorization
theorem was given in [4].

Theorem 2.2 Let R ∈ F(x) \ {0}. Then there exist z ∈ F and monic polyno-

mials a, b, c ∈ F[x] such that

R(x) = z
a(x)

b(x)

c(qx)

c(x)
,

gcd(a(x), b(qnx)) = 1, for all n ∈ N,

gcd(a(x), c(x)) = gcd(b(x), c(qx)) = 1 and c(0) 6= 0.

(2.1)

We call (az, b, c) a q-Gosper form (q-GF) of R.

Theorem 2.3 Every rational function R ∈ F(x) has a q-RNF.

Proof. It is clear that (0, 1, 1, 1) is a q-RNF of 0. For R 6= 0, by Theorem 2.2,
there exists a q-GF (az, b, c) of R. Applying Theorem 2.2 again to b(x)/a(x), we
get a q-GF (r, s, d). From the construction given in [4], we have r | b and s | a.
Hence s(x)⊥ r(xqn) for any n ∈ N because (az, b, c) is a q-GF. Since (r, s, d) is
also a q-GF, we have r(x)⊥ s(xqn) for any n ∈ N. Thus s/r is ε-reduced and
(zs, r, c/ gcd(c, d), d/ gcd(c, d)) is a q-RNF of R.

The above proof provides an algorithm to generate a q-RNF of R.

Algorithm q-RNF

if R = 0 then

3



return (0, 1, 1, 1);
else

compute ‘q-GF’ of R, we get (a, b, c);
compute ‘q-GF’ of b/a, we get (r, s, d);
return (s, r, c/ gcd(c, d), d/ gcd(c, d));

We now come to the q-multiplicative representation of a general q-hypergeometric
term. This is the starting point of the ε-free decomposition algorithm.

Definition 2.4 Suppose T (n) is a function from N to F. If there exist a non-

negative integer n0 and a nonzero rational function R(x) ∈ F(x) such that

T (n + 1) = R(qn)T (n) for all n ≥ n0, then we call T (n) a (univariate) q-
hypergeometric term.

Suppose (r, s, u, v) is a q-RNF of a rational function R. Then the corre-
sponding q-hypergeometric term T (n) satisfies

T (n) = T (n0)

n−1∏

j=n0

R(qj) =
T (n0)

u(qn0)/v(qn0)
·
u(qn)

v(qn)

n−1∏

j=n0

r(qj)

s(qj)
, ∀n ≥ n0.

This leads to the following definition.

Definition 2.5 Let T (n) be a q-hypergeometric term and D,U be two rational

functions such that D(qn) has neither poles nor zeros and U(qn) has no poles

for all n ≥ n0. Suppose that

T (n) = U(qn)

n−1∏

j=n0

D(qj), ∀n ≥ n0.

Then we call (D,U, n0) a q-multiplicative representation (q-MR) of T .

Let ∆ = N − 1 be the difference operator with respect to n. The following
lemma can be easily verified.

Lemma 2.6 Let T and T1 be two q-hypergeometric terms with q-MRs (D,U, n0)
and (D,U1, n0), respectively. Suppose that

T2 = T −∆T1 and U2 = U −D · εU1 + U1.

Then (D,U2, n0) is a q-MR of T2.

For u, v ∈ F[x], let R be the set of all nonnegative integers h such that there
exists an irreducible polynomial p(x) 6= x satisfying p(x) | u(x) and p(x) | v(qhx).
Define qdis(u, v) to be max{h ∈ R} or −1 if R is empty. Note that R is a finite
set, and “qdis” is well defined. If qdis(v, v) = 0, we say that v is ε-free.

Given a q-hypergeometric term T with a q-MR (D,U, n0). Usually the de-
nominator u of U is not ε-free. However, translating the decomposition algo-
rithm of [5] into the q-case, we have the following ε-free decomposition algorithm
“q-decomp”, which decomposes T = ∆T1+T2 such that T2 has a q-MR (F, V, n0)
where the denominator of V is ε-free.

Algorithm q-decomp
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Input: (D,U, n0) Output: U1, F, V ∈ F(x)

d1 := numer(D); d2 := denom(D);
U1 := 0; U2 := U ; u2 := denom(U);
N := qdis(u2, u2);
for h := N down to 1 do

v2 := u2/ gcd(u2, d2);
s(x) := gcd(v2(x), v2(q

−hx));
(s̃, ũ2) := pump(s, u2);
write U2 = a/ũ2 + b/s̃ where a, b ∈ F[x];
U ′
1 := −b/s̃;

U1 := U1 + U ′
1; U2 := U2 −D · εU ′

1 + U ′
1;

u2 := denom(U2);
f1 := d1; f2 := d2; v1 := numer(U2); v2 := denom(U2);
w := gcd(d2, v2);
v2 := v2/w; f2 := εwf2/w;
F := f1/f2; V := (1/w(qn0)) · v1/v2;
return (U1, F, V ).

The procedure “pump” is the same as in the ordinary case.

Algorithm pump

Input: f, g ∈ F[x]; Output: f̃ , g̃ ∈ F[x].

f̃ := f ; g̃ := g/f ;
repeat

d := gcd(f̃ , g̃); f̃ := f̃d; g̃ := g̃/d;
until deg d = 0;
return (f̃ , g̃).

The following theorem shows that the ε-free algorithm generates the desired
decomposition.

Theorem 2.7 Let T be a q-hypergeometric term with a q-MR (D,U, n0) and

U1, F, V be given by the algorithm q-decomp. Then there exist q-hypergeometric

terms T1 and T2 such that

(1) T = ∆T1 + T2.

(2) T1 has a q-MR (D,U1, n0) and T2 has a q-MR (F, V, n0).

(3) The denominator of V is ε-free.

Furthermore, if D is ε-reduced, so is F .

Proof. Let u0 be the denominator of U . We first use induction to show that
after iterating the loop of h in the algorithm i times, the denominator u2 of U2

satisfies:

(a) qdis(v2, v2) ≤ N − i,

(b) u2(q
n) has no zeros for all n ≥ n0,

where v2 = u2/ gcd(u2, d2), and d2 is the denominator of D.

The case for i = 0 is trivial. Assume that the assertion holds for i − 1. Let
u2 and u′

2 be the denominator of U2 after i − 1 and i iterations, respectively.
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Set h = N − (i − 1) > 0 and w2 = gcd(u2, d2). From the algorithm q-decomp
we have

v2 = u2/w2 and s = gcd(v2(x), v2(q
−hx)).

Suppose the prime decomposition of s is pα1

1 · · · pαr

r and v2 = pβ1

1 · · · pβr

r v′, w2 =
pγ1

1 · · · pγr

r w′ where v′ ⊥ s, w′ ⊥ s. Then the algorithm “pump” enables us to

decompose u2 as pβ1+γ1

1 · · · pβr+γr

r · (v′w′). That is, s̃ = pβ1+γ1

1 · · · pβr+γr

r and
ũ2 = v′w′. Since

U2 =
a

ũ2
+

d1
d2

· ε

(
b

s̃

)
,

it follows that u′
2 divides the least common multiple of ũ2 and d2εs̃. Hence

we have that u′
2 divides v′d2 · εs̃. Let v′′ = v′ · εs̃. Assume that there exist

an integer m ≥ h and an irreducible polynomial p(x) 6= x such that p | v′′ and
p |εmv′′. We may encounter four cases:

• p | v′ and p | εmv′.
From v′ | v2 and qdis(v2, v2) ≤ h, it follows that m = h. Therefore,
ε
−hp | ε−hv2 and ε

−hp | v2. Consequently, we have ε
−hp | s, which con-

tradicts v′ ⊥ s.

• p | v′ and p | εm+1s̃.
Since s and s̃ have the same prime factors, we have p |εm+1s, implying
that p |εm+1v2. On the other hand, we have p | v2, which contradicts
qdis(v2, v2) ≤ h.

• p | εs̃ and p |εmv′.
In this situation, we have ε

−1p | s̃, which implies that ε
−1p |ε−hv2, or

equivalently, ε
h−1p | v2. On the other hand, ε

h−1p | εm+h−1v2. Since
qdis(v2, v2) ≤ h, we get m + h − 1 ≤ h, and hence m = 1. Now we
have p |εs and p | εv′, which contradicts v′ ⊥ s.

• p | εs̃ and p |εm+1s̃.
Similarly, we have ε

−1p | s and hence ε
−1p |ε−hv2, i.e., ε

h−1p | v2. How-
ever, we have ε

h−1p |εm+hv2. Thus, we obtain m + h ≤ h, which is also
a contradiction.

In summary, we may conclude that qdis(v′′, v′′) ≤ h − 1. Because u′
2 divides

v′′ · d2, there exist v̄ | v
′′ and w̄ | d2 such that u′

2 = v̄w̄. Let v′2 = u′
2/ gcd(u

′
2, d2).

From w̄ | gcd(u′
2, d2), it follows that v

′
2 | v̄. So we get qdis(v

′
2, v

′
2) ≤ h−1 = N−i.

Thus, we have proved (a). Since u′
2|u2 · εu2 · d2, (b) immediately follows from

the induction hypothesis.

On the other hand, since s̃ |u2, (b) implies that U1(q
n) has no poles for all

n ≥ n0. Let

T1(n) = U1(q
n)

n−1∏

j=n0

D(qj) and T2(n) = U2(q
n)

n−1∏

j=n0

D(qj). (2.2)

Noting that U2 = U −DεU1 + U1, by Lemma 2.6, we obtain T = ∆T1 + T2.

Because w | d2 and d2(q
n) 6= 0 for all n ≥ n0, we can write T2(n) as

T2(n) =
1

w(qn0 )
U2(q

n)w(qn)

n−1∏

j=n0

D(qj)
w(qj)

w(qj+1)
= V (qn)

n−1∏

j=n0

F (qj).
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Let v be the denominator of V . Then (a) implies qdis(v, v) = 0, that is, v is
ε-free.

Finally, notice that f1 = d1 and f2 = εw · (d2/w) where w | d2. Therefore, F
is ε-reduced provided that D is ε-reduced. This completes the proof.

3 Bivariate q-Hypergeometric Terms

We begin this section with the definition of bivariate q-hypergeometric terms.

Definition 3.1 Suppose T (n, k) is a function from N
2 to F. If there exist ra-

tional functions R1(x, y), R2(x, y) ∈ F(x, y) and n0 ∈ N such that

T (n+ 1, k) = R1(q
n, qk)T (n, k) and T (n, k + 1) = R2(q

n, qk)T (n, k),

for all n, k ≥ n0, then we call T (n, k) a bivariate q-hypergeometric term.

Without loss of generality, from now on we may assume that n0 = 0 and
that R1(q

n, qk), R2(q
n, qk) have neither zeros nor poles for all n, k ≥ 0.

Denote by εx and εy the shift operators on F(x, y) defined by εxx = qx,
εx|F(y) = id (the identity map) and εyy = qy, εy|F(x) = id, respectively. The
idea of q-RNF can be easily adopted to the bivariate case by taking F(y) as
the ground field. Let R(x, y) be a rational function of x and y, its q-rational
normal form (q-RNF with respect to εx) is represented by (r, s, u, v) as in the
univariate case. By using the ground field F(x), we may find a q-RNF of R(x, y)
with respect to εy.

Let T (n, k) be a bivariate q-hypergeometric term. By definition, there exists
a rational function R such that

T (n+ 1, k)/T (n, k) = R(qn, qk).

Suppose (r, s, u, v) is a q-RNF of R with respect to εx. We call (r, s, u, v) a
q-normal representation (q-NR) of T (n, k) with respect to the shift operator N .
Similarly, we can define the q-NR of T (n, k) with respect to the shift operator
K.

We next give a characterization of the polynomials involved in the q-NR of
bivariate q-hypergeometric terms.

Theorem 3.2 Let T (n, k) be a bivariate q-hypergeometric term that has a q-NR
(r, s, u, v) with respect to N . Then r and s are products of polynomials having

the form

(xcyd) ·

a∏

l=1

p(qwlxayb),

where p is a Laurent polynomial of one variable, a ∈ Z
+, b, c, d, wl ∈ Z, a⊥ b,

and wi 6≡ wj (mod a), ∀ i 6= j.

Similarly, suppose (r, s, u, v) is a q-NR of T with respect to K. Then r and

s are products of polynomials having the form

(xcyd) ·

a∏

l=1

p(qwlxbya)

under the same conditions.
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Sketch of the proof. The proof of the ordinary case [11, Theorem 3.4] can be
carried over to the q-case except that we need to consider the characterization
of polynomials f(x, y) such that f(qax, qby) = Cf(x, y) for certain integers a, b
and C ∈ F.

Consequently, we have

Corollary 3.3 Let T (n, k) be a bivariate q-hypergeometric term that has a q-
NR (r, s, u, v) with respect to N (or K respectively). Then we have

T (n, k) = C ·
u(qn, qk)

v(qn, qk)
·

uu∏
l=1

aln+blk+cl∏
j=0

fl(q
j)

vv∏
l=1

a′

l
n+b′

l
k+c′

l∏
j=0

gl(qj)

,

where C ∈ F, uu, vv ∈ N, al, bl, cl, a
′
l, b

′
l, c

′
l ∈ Z and fl, gl are polynomials.

Corollary 3.3 enables us to give the following definition of q-proper hyperge-
ometric terms.

Definition 3.4 A polynomial f ∈ F[x, y] is said to be q-proper if for each of its

irreducible factor p(x, y) ∈ F[x, y], there exist a, b ∈ Z, not both zeros, such that

p(x, y)|p(qax, qby). A bivariate q-hypergeometric term T is said to be q-proper
if v is a q-proper polynomial where (r, s, u, v) is a q-NR of T with respect to N
or K.

Suppose that T is a bivariate q-hypergeometric term that has a q-NR (r, s, u, v)
with respect to N (or K). Theorem 3.2 guarantees that r and s are both
q-proper polynomials.

As in the case of ordinary bivariate hypergeometric terms ( [11, Theorems
4.2]), we have an analogous “fundamental theorem” for the q-case.

Theorem 3.5 Let T (n, k) be a bivariate q-hypergeometric term. Then T is q-
proper if and only if there exist polynomials aij(x) ∈ F[x], not all zero, such

that ∑

0≤i≤I, 0≤j≤J

aij(q
n)T (n+ i, k + j) = 0 ∀n, k ≥ 0.

Based on an analogous argument for the ordinary case as in [16, Theorem
6.2.1], we get

Corollary 3.6 Any q-proper hypergeometric term has a qZ-pair.

4 The Existence of qZ-Pairs

In this section, we obtain a necessary and sufficient condition for the existence
of qZ-pairs for any bivariate q-hypergeometric term based on its q-NR with
respect to K.

From Theorem 3.2, we have

8



Corollary 4.1 Let T (n, k) be a bivariate q-hypergeometric term that has a q-
NR (r, s, u, v) with respect to K. Then there exist polynomials fi(x), gi(x) ∈ F[x]
and ai, a

′
i, bi, b

′
i ∈ Z such that

k−1∏

j=0

(
r(qn+1, qj)

r(qn, qj)
·

s(qn, qj)

s(qn+1, qj)

)
=

ℓ∏

i=1

fi(q
aik+bin)

gi(qa
′

i
k+b′

i
n)

.

We need to consider the following ratio

T (n+ i, k)

T (n, k)
=

T (n+ i, 0)

T (n, 0)

k−1∏

j=0

{
T (n+ i, j + 1)

T (n+ i, j)

T (n, j)

T (n, j + 1)

}
,

which can be rewritten as

T (n+ i, k)

T (n, k)
=

i−1∏

l=0

k−1∏

j=0

{r(qn+l+1, qj)

r(qn+l, qj)

s(qn+l, qj)

s(qn+l+1, qj)

} i−1∏

l=0

T (n+ l + 1, 0)

T (n+ l, 0)

·
u(qn+i, qk)

u(qn+i, q0)

u(qn, q0)

u(qn, qk)

v(qn+i, q0)

v(qn+i, qk)

v(qn, qk)

v(qn, q0)
. (4.1)

From Corollary 4.1 we get the following expression.

Lemma 4.2 Let T (n, k) be a bivariate q-hypergeometric term that has a q-
NR (r, s, u, v) with respect to K. Then for each i ≥ 0, there exist q-proper

polynomials w
(i)
1 (x, y) and w

(i)
2 (x, y) such that

T (n+ i, k)

T (n, k)
=

u(qn+i, qk)

v(qn+i, qk)
·
v(qn, qk)

u(qn, qk)
·
w

(i)
1 (qn, qk)

w
(i)
2 (qn, qk)

, ∀n, k ≥ 0. (4.2)

An εy-free polynomial that is not q-proper has a special factor.

Lemma 4.3 Let f ∈ F[x, y] be a non-q-proper and εy-free polynomial. Then

there exists an irreducible factor p of f such that

p(x, y)⊥ p(qix, qjy), ∀ (i, j) ∈ Z
2 \ {(0, 0)},

p(x, y)⊥ f(qix, qjy), ∀ (i, j) ∈ (N× Z) \ {(0, 0)}.
(4.3)

Proof. Since f(x, y) is non-q-proper, by definition it has an irreducible factor
p1(x, y) such that p1(x, y)⊥ p1(q

ix, qjy), ∀ (i, j) ∈ Z
2 \ {(0, 0)}.

We may factor f(x, y) as

f(x, y) = pα1

1 (qa1x, qb1y) · · · pαr

1 (qarx, qbry)f1(x, y),

where (ai, bi) ∈ Z
2 are distinct pairs, αi ∈ Z

+, and p1(q
ix, qjy)⊥ f1(x, y) for

all i, j ∈ Z. Since f(x, y) is εy-free, it follows that ai 6= aj as long as i 6= j.
Without loss of generality, we may assume that a1 < a2 < · · · < ar. Thus,
p(x, y) = p1(q

a1x, qb1y) satisfies the condition (4.3).

We are now ready to give a criterion for the existence of qZ-pairs.

Theorem 4.4 Let T (n, k) be a bivariate q-hypergeometric term that has a q-NR
(r, s, u, v) with respect to K such that v is εy-free. Then T (n, k) has a qZ-pair

if and only if v is a q-proper polynomial.

9



Proof. Because of Corollary 3.6, it suffices to show that if T (n, k) has a qZ-
pair, then it is q-proper. To this end, we assume that T (n, k) is a bivariate
q-hypergeometric term. Moreover, we assume that T (n, k) is not q-proper, but
it has a qZ-pair. We proceed to find a contradiction.

Clearly, for a difference operator L ∈ F[qn, N ], we have

(N · L)T (n, k) = (K − 1)G(n, k) ⇐⇒ LT (n, k) = (K − 1)G(n− 1, k).

Therefore, we may assume that T (n, k) has a qZ-pair (L,G) of the form

L =

I∑

i=0

ai(q
n)N i,

where ai(q
n) are polynomials in qn and a0 6= 0. Since LT/T and (K − 1)G/G

are both rational functions of qn and qk, we may assume that

G(n, k) =
f(qn, qk)

g(qn, qk)
T (n, k),

where f, g ∈ F[x, y] are two relatively prime polynomials.

By the definition of qZ-pairs, we have

I∑

i=0

ai(q
n)

T (n+ i, k)

T (n, k)
=

f(qn, qk+1)

g(qn, qk+1)

T (n, k + 1)

T (n, k)
−

f(qn, qk)

g(qn, qk)
. (4.4)

Substituting (4.2) into (4.4), we obtain

I∑

i=0

ai(x)
u(qix, y)

v(qix, y)

w
(i)
1 (x, y)

w
(i)
2 (x, y)

=
f(x, qy)

g(x, qy)

r(x, y)

s(x, y)

u(x, qy)

v(x, qy)
−

f(x, y)

g(x, y)

u(x, y)

v(x, y)
. (4.5)

Let u1 = u/ gcd(u, g), g1 = g/ gcd(u, g). Multiplying

g1(x, qy)g1(x, y)v(x, qy)s(x, y)
I∏

j=0

v(qjx, y)w
(j)
2 (x, y)

to both sides of (4.5), we arrive at

g1(x, qy)g1(x, y)v(x, qy)s(x, y)

·

I∑

i=0

ai(x)u(q
ix, y)w

(i)
1 (x, y)

∏

j 6=i

v(qjx, y)w
(j)
2 (x, y)

=f(x, qy)r(x, y)u1(x, qy)g1(x, y)
I∏

j=0

v(qjx, y)w
(j)
2 (x, y)

− f(x, y)u1(x, y)g1(x, qy)v(x, qy)s(x, y)w
(0)
2 (x, y) ·

I∏

j=1

v(qjx, y)w
(j)
2 (x, y).

(4.6)

Since T (n, k) is not q-proper, from Lemma 4.3 it follows that there exists
an irreducible factor p of v satisfying the condition (4.3). Noting that p(x, y)
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divides each term of the left-hand side of (4.6) except for the first term, we
obtain that p(x, y) divides

g1(x, qy)v(x, qy)s(x, y)
I∏

j=1

v(qjx, y)w
(j)
2 (x, y)

×
(
g1(x, y)a0(x)u(x, y)w

(0)
1 (x, y) + f(x, y)u1(x, y)w

(0)
2 (x, y)

)
.

From (4.3) it follows that

p(x, y)⊥ v(x, qy)
I∏

j=1

v(qjx, y).

Since s and w
(j)
2 are q-proper, they are also relatively prime to p. This implies

that p(x, y) divides

g1(x, qy)
(
g1(x, y)a0(x)u(x, y)w

(0)
1 (x, y) + f(x, y)u1(x, y)w

(0)
2 (x, y)

)
. (4.7)

Similarly, since p(x, qy) divides both sides of (4.6) and u⊥ v, we have

p(x, qy) | f(x, qy)g1(x, y). (4.8)

Case 1. Suppose p(x, qy) | f(x, qy). Since p(x, y) divides (4.7), it follows that

p(x, y) | g1(x, qy)g1(x, y)a0(x)u(x, y)w
(0)
1 (x, y).

Since f ⊥ g, u⊥ v, a0 and w
(0)
1 are q-proper polynomials, we may deduce

that p(x, y) | g1(x, qy), i.e., p(x, q
−1y) | g1(x, y). Let m(>0) be the greatest

integer such that p(x, q−my) | g1(x, y). By virtue of (4.6), we have that
p(x, q−my) divides

f(x, y)u1(x, y)g1(x, qy)v(x, qy)s(x, y)w
(0)
2 (x, y)

I∏

j=1

v(qjx, y)w
(j)
2 (x, y).

However, f ⊥ g and g1 ⊥ u1 imply that p(x, q−my) | g1(x, qy), which con-
tradicts the choice of m.

Case 2. Suppose p(x, qy) | g1(x, y). Let M > 0 be the greatest integer such that
p(x, qMy) | g1(x, y). Similarly, from (4.6) it follows that p(x, qM+1y) di-
vides

f(x, qy)r(x, y)u1(x, qy)g1(x, y)
I∏

j=0

v(qjx, y)w
(j)
2 (x, y).

Hence we get p(x, qM+1y) | g1(x, y), which is again a contradiction.

To extend the above result to general bivariate q-hypergeometric terms, we
need the concept of similar q-hypergeometric terms. Two bivariate q-hypergeometric
terms T1, T2 are called similar if there exists a rational function R ∈ F(x, y) such
that T1(n, k)/T2(n, k) = R(qn, qk).

As in the ordinary case, the existence of qZ-pairs is preserved under addition
of similar bivariate q-hypergeometric terms.
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Lemma 4.5 Suppose there exist qZ-pairs for two similar bivariate q-hypergeometric

terms T1(n, k) and T2(n, k). Then there exists a qZ-pair for T (n, k) = T1(n, k)+
T2(n, k).

Notice that T (n, k) = (K − 1)G(n, k) has a qZ-pair (1, G). Combining
Theorem 4.4 and Lemma 4.5, we obtain the main result of this paper.

Theorem 4.6 Let T (n, k) be a bivariate q-hypergeometric term. Let T1, T2 be

two similar bivariate q-hypergeometric terms satisfying

T (n, k) = (K − 1)T1(n, k) + T2(n, k)

and T2(n, k) has a q-NR (r, s, u, v) with respect to K such that v is εy-free. Then

T (n, k) has a qZ-pair if and only if T2(n, k) is a q-proper hypergeometric term,

or equivalently, if and only if v(x, y) is a q-proper polynomial.

5 Algorithms

Let T (n, k) be a bivariate q-hypergeometric term. By the algorithm “q-RNF”,
we may find a q-NR (r, s, u, v) of T (n, k) with respect to K. Let

F (k) =
u(x, qk)

v(x, qk)

k−1∏

j=0

r(x, qj)

s(x, qj)
, ∀ k ∈ N.

Then F (k) is a univariate q-hypergeometric term over the field F(x) with a
q-MR (r/s, u/v, 0). On the other hand, by Equation (4.1), we have

F (k)|x=qn+1

F (k)|x=qn
=

u(qn+1, qk)v(qn, qk)

u(qn, qk)v(qn+1, qk)

k−1∏

j=0

r(qn+1, qj)s(qn, qj)

r(qn, qj)s(qn+1, qj)

=
T (n+ 1, k)

T (n, k)
·

T (n, 0)

T (n+ 1, 0)
·
u(qn+1, q0)v(qn, q0)

u(qn, q0)v(qn+1, q0)
,

which is also a rational function on qn and qk. Hence F̃ (n, k) = F (k)|x=qn is a
bivariate q-hypergeometric term.

Using the algorithm “q-decomp” given in Section 2, one may find univariate
q-hypergeometric terms F1(k), F2(k) such that

F (k) = (K − 1)F1(k) + F2(k)

and F2(k) has a q-MR (f1/f2, v1/v2, 0) with v2 being εy-free. Since f1/f2, v1/v2 ∈
F(x)(y), we may assume that f1, f2, v1, v2 ∈ F[x, y] and f1 ⊥ f2, v1 ⊥ v2. From
the fact that r/s is εy-reduced, it follows that f1/f2 is also εy-reduced.

Let

T1(n, k) = T (n, 0)
v(qn, q0)

u(qn, q0)
· F1(k)|x=qn ,

T2(n, k) = T (n, 0)
v(qn, q0)

u(qn, q0)
· F2(k)|x=qn .

Since Equation (2.2) implies that

F1(k) =
U1

u/v
· F (k) and F2(k) =

v1/v2
u/v

· F (k),
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it follows that T1(n, k) and T2(n, k) are similar bivariate q-hypergeometric terms.
It is easily verified that

T (n, k) = (K − 1)T1(n, k) + T2(n, k)

and (f1, f2, v1, v2) is a q-NR of T2 with respect to K. Therefore, Theorem 4.6
implies that T (n, k) has a qZ-pair if and only if v2 is a q-proper polynomial.

Finally, we need the algorithm given by Le [13] for determining whether or
not a polynomial is q-proper.

We are now ready to describe the algorithm to determine whether a bivariate
q-hypergeometric term T (n, k) has a qZ-pair.

1. Apply the algorithm in [7] to find a rational function R ∈ F(x, y)
such that

T (n, k + 1)

T (n, k)
= R(qn, qk).

2. Find a q-RNF (r, s, u, v) with respect to εy of R.

3. For D = r/s, U = u/v and n0 = 0, apply the algorithm ‘q-decomp’
with respect to εy to get V = v1/v2.

4. Use the algorithm in [13] to determine whether v2 is q-proper.
If the answer is yes, then T has a qZ-pair; otherwise, T does

not have any qZ-pair.

Here are two examples.

Example 1. Let

T (n, k) =
qk(1 + qn+1 + qk+2)

(qn + qk + 1)(qn + qk+1 + 1)
∏k+1

j=1 (1− qj)
.

Then
T (n, k + 1)

T (n, k)
=

q(1 + qn+1 + qk+3)(qn + qk + 1)

(qn + qk+2 + 1)(1 + qn+1 + qk+2)(1 − qk+2)
,

and we have

r = q, s = 1− q2y, u = 1 + qx+ q2y, v = (x+ y + 1)(x+ qy + 1)

is a q-NR of T with respect to K. For D = r/s, U = u/v and n0 = 0, applying
the algorithm “q-decomp”, we get

V = v1/v2 =
−q2

(−1 + q2)(x+ 1)
.

Clearly, v2 is q-proper, so T (n, k) has a qZ-pair. Indeed, we can check that

L = 1, G =
1

(qn + qk + 1)
∏k

j=1(1− qj)

is a qZ-pair for T (n, k).

Example 2. Let

T (n, k) =
qk(1 + qn+1 + qk+2)

(qn + qk + 1)(qn + qk+1 + 1)
∏k

j=1(1− qj)
.
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Then
T (n, k + 1)

T (n, k)
=

q(1 + qn+1 + qk+3)(qn + qk + 1)

(qn + qk+2 + 1)(1 + qn+1 + qk+2)(1 − qk+1)
,

and we have

r = q, s = 1− qy, u = 1 + qx+ q2y, v = (x + y + 1)(x+ qy + 1)

is a q-NR of T with respect to K. For D = r/s, U = u/v and n0 = 0, applying
the algorithm “q-decomp”, we get

V = v1/v2 =
−(x+ y + 1)q2

(q − 1)(x+ 1)(x+ qy + 1)
.

Since x + qy + 1 is not a q-proper polynomial, it follows that T (n, k) has no
qZ-pair.
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