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Abstract. We introduce a q-differential operator Dxy on functions in two
variables which turns out to be suitable for dealing with the homogeneous
form of the q-binomial theorem as studied by Andrews, Goldman and Rota,
Roman, Ihrig and Ismail, et al. The homogeneous versions of the q-binomial
theorem and the Cauchy identity are often useful for their specializations
of the two parameters. Using this operator, we derive an equivalent form
of the Goldman-Rota binomial identity and show that it is a homogeneous
generalization of the q-Vandermonde identity. Moreover, the inverse identity
of Goldman and Rota also follows from our unified identity. We also obtain
the q-Leibniz formula for this operator. In the last section, we introduce the
homogeneous Rogers-Szegö polynomials and derive their generating function
by using the homogeneous q-shift operator.
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1. Introduction

We adopt the common conventions and notations on q-series. So we always
assume that |q| < 1 and use the following notation of the q-shifted factorial:

(x; q)0 = 1; (x; q)n =
n−1∏
j=0

(1− qjx), n = 1, 2, ...,∞.

The basic hypergeometric series rφs is defined as follows [6]:

rφs(x1, x2, · · · , xr; y1, y2, · · · , ys; q, t) = rφs

[
x1, x2, · · · , xr
y1, y2, · · · , ys

; q, t

]
=
∞∑
n=0

(x1; q)n(x2; q)n · · · (xr; q)n
(y1; q)n(y2; q)n · · · (ys; q)n

[
(−1)nq(

n
2)
]1+s−r

tn,
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where q 6= 0 when r > s+ 1.

The q-binomial coefficient is given by:[
n

k

]
=

(q; q)n
(q; q)n−k(q; q)k

.

The following is the homogeneous form of the q-shifted factorial:

Pn(x, y) = (y/x; q)n x
n = (x− y)(x− qy) · · · (x− qn−1y).

We also have the following basic relations:[
n

k

]
(−1)kq(

k
2) =

(q−n; q)kq
nk

(q; q)k
,

Pn(x, y) = (−1)nq(
n
2)Pn(y, q1−nx),

Pn−k(x, q1−ny) = (−1)n−kq(
k
2)−(n

2)Pn−k(y, qkx).

The polynomials Pn(x, y) are important in the q-umbral calculus as s-
tudied by Andrews [1, 2], Goldman-Rota [5], Goulden-Jackson [7], Ihrig and
Ismail [8], Roman [13], Johnson[11], et al. In the q-umbral calculus, the poly-
nomial sequence Pn(x, y) is a homogeneous Eulerian family. By vector space
arguments, Goldman and Rota [5] have shown the following q-binomial iden-
tity, which we call the Goldman-Rota q-binomial theorem. This identity may
be known earlier, but we do not have accurate information on the reference:

Pn(x, y) =
n∑

k=0

[
n

k

]
Pk(x, z)Pn−k(z, y). (1.1)

Let Vn be an n-dimensional vector space over the finite field of q elements,
and X, Y Z be vector spaces over GF (q) such that |X| = x, |Y | = y and
|Z| = z where |X| denotes the number of vectors in X. Assuming that
Z ⊂ Y ⊂ X and dimVn< dimZ , Goldman and Rota [5] show that the above
identity counts in two ways the set of all one-to-one linear transformations
f : Vn → X such that f−1(Z) = 0. Setting y = 0 and z = 1 in (1.1), one
obtains the following identity due to Cauchy:

xn =
n∑

k=0

[
n

k

]
(x− 1)(x− q) · · · (x− qk−1). (1.2)

Note that the polynomials Pn(x, 1) = (x− 1)(x− q) · · · (x− qn−1) are some-
times called the Gauss polynomials. A direct combinatorial argument for
the above identity of Cauchy is also given by Goldman and Rota [5]. For
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further background on the above q-binomial theorem and its specializations,
the reader is referred to the introduction written by Kung [12]. Moreover,
by Möbius inversion, Goldman and Rota obtain an identity which leads to a
partition identity, generalizing Durfee’s identity.

Pn(x, y) =
n∑

k=0

[
n

k

]
(−1)kq(

k
2)Pk(y, 1)Pn−k(x, qk). (1.3)

It was not obvious how to show the equivalence of the above two q-binomial
theorems (1.1) and (1.3). Here we give a derivation:

Pn(x, y) = (−1)nq(
n
2)Pn(y, q1−nx)

= (−1)nq(
n
2)

n∑
k=0

[
n

k

]
Pk(y, 1)Pn−k(1, q1−nx)

=
n∑

k=0

[
n

k

]
(−1)kq(

k
2)Pk(y, 1)Pn−k(x, qk)

Goulden and Jackson [7] give a similar derivation of (1.3) from (1.1). More-
over, they give an interpretation of the polynomials Qn(x, y) = Pn(x,−y) in
terms of q-counting of certain permutations (bimodal permutations). The
following exchange property of Qn(x, y) is given by Goulden and Jackson [7]

n∑
k=0

[
n

k

]
Qk(x, y)Qn−k(w, z) =

n∑
k=0

[
n

k

]
Qk(w, y)Qn−k(x, z).

Note that there is a notation for Qn(x, y) in the literature following F. H.
Jackson [9] as mentioned by Johnson [11]:

(x+ y)[n] = (x+ y)(x+ qy) · · · (x+ qn−1y).

Because the polynomials Pn(x, y) occur so often in q-series that they may
deserve a name. We propose to call them the Cauchy polynomials for the
reason that they are the coefficients in the expansion of the homogenous
version of the Cauchy identity (or the q-binomial theorem):

∞∑
n=0

Pn(x, y)

(q; q)n
tn =

(yt; q)∞
(xt; q)∞

. (1.4)

Setting y = 0, the Cauchy identity becomes Euler’s identity:

1

(xt; q)∞
=
∞∑
n=0

xntn

(q; q)n
. (1.5)
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It seems to be neglected that the q-binomial theorem of Goldman and Rota,
and the above exchange property of Qn(x, y) both are immediate from the
above homogeneous form of the Cauchy identity.

The main result of this paper is to introduce the operator Dxy on func-
tions in two variables x and y. This operator turns out to be suitable for
dealing with the Cauchy polynomials Pn(x, y). We derive a binomial iden-
tity which unifies the two identities of Rota and Goldman, as well as the
q-Vandermonde identity. Moreover, our identity can be shown to be equiva-
lent to the Goldman-Rota binomial identity, and the it can be regarded as a
homogeneous generalization of the q-Vandermonde identity.

Based on the q-Leibniz formula for the classical q-difference operator,
we obtain the q-Leibniz formula for the homogeneous q-difference operator.
It turns out the Cauchy polynomials also appear in the homogeneous q-
Leibniz formula. In the last section, we introduce the homogeneous Rogers-
Szegö polynomials and the q-shift operator. The generating function of the
homogeneous Rogers-Szegö polynomials is derived.

2. The Homogeneous q-difference Operator

Recall that the classical q-difference operator, or the q-derivative, acting on
functions on variable x, Dq is defined by:

Dqf(x) =
f(x)− f(qx)

x
.

Note that when the function f is in the context of hypergeometric functions,
the variable x is often used as a parameter, but throughout this paper Dq

is always acting on x. The operator Dq is also the Euler-Jackson difference
operator [10]. It may also be expressed in terms of the q-shift operator on
the variable x:

ηxf(x) = f(qx).

Thus, we may write

Dq =
1− ηx
x

.

Notice that the inverse of ηx is denoted by θx = η−1x .

Andrews [1, 2] employs the q-difference operator to study the Cauchy
polynomials for the case y = 1, and observes the following relation:

DqPn(x, 1) = (1− qn)Pn−1(x, 1).
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The objective of this paper to introduce a new operator which is suitable for
the study of the Cauchy polynomials:

Dxyf(x, y) =
f(x, q−1y)− f(qx, y)

x− q−1y
, (2.1)

where x and y are variables. We now give the frist theorem of this paper,
which is straightforward to verify.

Theorem 2.1 We have

Dxy{Pn(x, y)} = (1− qn)Pn−1(x, y). (2.2)

Obviously, for any constant c, one has Dxyc = 0. Moreover, one may have
the following property of the q-difference operator.

Proposition 2.2 If f(x, y) and g(x, y) are homogeneous polynomials of the

same degree n, and H(x, y) =
f(x, y)

g(x, y)
, then we have

DxyH(x, y) = 0.

From (2.2), we obtain the following property:

Proposition 2.3 We have

Dxy

{
(yt; q)∞
(xt; q)∞

}
= t

(yt; q)∞
(xt; q)∞

, (2.3)

Dk
xy

{
(yt; q)∞
(xt; q)∞

}
= tk

(yt; q)∞
(xt; q)∞

. (2.4)

We use θy for the operator acting on the variable y. Clearly,

θyηx = ηxθy. (2.5)

We define Pn(θy, ηx) as the following operator:

Pn(θy, ηx) = (θy − ηx)(θy − qηx) · · · (θy − qn−1ηx). (2.6)

The following theorem gives the expansion of the power of Dxy in terms
of operations on x and y individually.
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Theorem 2.4 We have

Dxyf(x, y) =
(θy − ηx){f(x, y)}

x− q−1y
, (2.7)

Dn
xyf(x, y) =

Pn(θy, q
1−nηx){f(x, y)}

Pn(x, q−ny)
. (2.8)

Proof.

Dn+1
xy {f(x, y)}(x− q−1y)

=
θyPn(θy, q

1−nηx){f(x, y)}
Pn(x, q−n−1y)

− ηxPn(θy, q
1−nηx){f(x, y)}

Pn(qx, q−ny)

=
(θy − q−nηx)Pn(θy, q

1−nηx){f(x, y)}
Pn(x, q−n−1y)

=
Pn+1(θy, q

−nηx){f(x, y)}
Pn(x, q−n−1y)

.

From (2.5) and (2.6), we have

Lemma 2.5 We have

Pn(θy, ηx) =
n∑

k=0

[
n

k

]
(−1)kq(

k
2)ηkxθ

n−k
y . (2.9)

Theorem 2.4 can rewritten as:

Theorem 2.6 The operator Dn
xy has the following expansion:

Dn
xy{f(x, y)}

=
1∏n

k=1 θ
k
y{x− y}

n∑
k=0

[
n

k

]
(−1)kq(

k
2)q(1−n)kηkxθ

n−k
y {f(x, y)}

=
1

Pn(x, q−ny)

n∑
k=0

[
n

k

]
(−1)kq(

k
2)q(1−n)kf(qkx, qk−ny).
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From (2.4) and Theorem 2.6, we have

Dn
xy

{
(yt; q)∞
(xt; q)∞

}
=

1

Pn(x, q−ny)

n∑
k=0

[
n

k

]
(−1)kq(

k
2)q(1−n)k

(qk−nyt; q)∞
(qkxt; q)∞

=
(yt; q)∞
(xt; q)∞

1

Pn(x, q−ny)

n∑
k=0

[
n

k

]
(−1)kq(

k
2)q(1−n)k(xt; q)k(qk−nyt; q)n−k.

We now arrive at the following identity:

tnPn(x, q−ny) =
n∑

k=0

[
n

k

]
(−1)kq(

k
2)q(1−n)k(xt; q)k(qk−nyt; q)n−k. (2.10)

Note that the above identity is an equivalent form of the Goldman-Rota q-
binomial identity. However, this form has the advantage of specializing to the
inverse Goldman-Rota identity (1.3) and it can be viewed as a homogeneous
version of the q-Vandermonde identity:

2φ1(q
−n, x; y; q, q) =

(y/x; q)n
(y; q)n

xn, (2.11)

For given n, we may specialize the values of the parameters in (2.10) to
obtain some classical results.

• Setting t → 1/z, q−1y → y, and exchanging x and y, we obtain
Goldman-Rota q-binomial identity(1.1). Thus, we may say that the
formula (2.10) is equivalent to the Goldman-Rota q-binomial theorem.

• Setting t → 1 and q−ny → y, we obtain the q-Vandermonde identity
(2.11). Indeed, setting 1/t → z and q−ny → y one may rewrite (2.10)
in the following form:

Pn(x, y) =
n∑

k=0

[
n

k

]
q(1−n)kPk(qk−1x, z)Pn−k(z, qky).

• Setting t → q1−n and q−ny → y, we get the inverse Goldman-Rota
identity (1.3). In (1.3), setting 1/y by y and 1/x by x then setting
n→∞, we obtain the following identity [6]:

1φ1(y;x; q, x/y) =
(x/y; q)∞
(x; q)∞

.
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3. The homogeneous q-Leibniz formula

In this section, we give the homogeneous q-Leibniz formula for the operator
Dxy. In order to present a non-inductive proof, we will use the q-Leibniz
formula for the classical q-difference operator Dq [13, 14]

Dn
q {f(x)g(x)} =

n∑
k=0

[
n

k

]
qk(k−n)Dk

q{f(x)}Dn−k
q {g(qkx)}.

Theorem 3.7 For n ≥ 0, we have

Dn
xy{f(x, y)g(x, y)}

=
n∑

k=0

[
n

k

]
Pn−k(q−1y, x)

Pn−k(q−1y, qkx)
Dk

xy{g(qn−kx, y)}Dn−k
xy {f(x, q−ky)}.

Proof. Let y = xzq, then we have F (x, z) = f(x, y), and G(x, z) = g(x, y).
It follows that

Dxy =
1

1− z
Dqθz (3.12)

and
Dqθz = θzDq. (3.13)

Therefore,

Dk
xy =

1

(q1−kz; q)k
Dk

q θ
k
z . (3.14)

Thus, we have

Dn
xy{f(x, y)g(x, y)}

=
1

(q1−nz; q)n
Dn

q θ
n
z {F (x, z)G(x, z)}

=
1

(q1−nz; q)n
θnzD

n
q {F (x, z)G(x, z)}

=
1

(q1−nz; q)n
θnz

n∑
k=0

[
n

k

]
qk(k−n)Dk

q{F (x, z)}Dn−k
q {G(qkx, z)}

=
1

(q1−nz; q)n

n∑
k=0

[
n

k

]
qk(k−n)Dk

q θ
k
z{F (x, qk−nz)}Dn−k

q θn−kz {G(qkx, q−kz)}

=
n∑

k=0

[
n

k

]
Pk(q−1y, x)

Pk(q−1y, qn−kx)
Dk

xy{f(x, qk−ny)}Dn−k
xy {g(qkx, y)}

=
n∑

k=0

[
n

k

]
Pn−k(q−1y, x)

Pn−k(q−1y, qkx)
Dk

xy{g(qn−kx, y)}Dn−k
xy {f(x, q−ky)}.
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Clearly, setting z = 0, namely, y = 0, we have:

Dk
xy = Dk

q .

Corollary 3.8 We have

Dn
xy{f(x, y)g(x)} =

n∑
k=0

[
n

k

]
(−x)kq(

k
2)

Pk(q−1y, qn−kx)
Dk

q{g(qn−kx)}Dn−k
xy {f(x, q−ky)}.

4. The homogeneous q-shift operator

Based on the homogeneous q-difference operator, one can build up the homo-
geneous q-shift operator as the q-exponential of the homogeneous q-difference
operator:

E(Dxy) =
∞∑
k=0

Dk
xy

(q; q)k
. (4.15)

The following proposition for the homogeneous q-shift operator immedi-
ately follows from Proposition 2.3:

Proposition 4.9 We have

E(Dxy)

{
(yt; q)∞
(xt; q)∞

}
=

(yt; q)∞
(t; q)∞(xt; q)∞

.

The q-shift operator is suitable for the study of the homogeneous Rogers-
Szegö polynomials which are defined by

hn(x, y|q) =
n∑

k=0

[
n

k

]
Pk(x, y).

Note that setting y = 0 the polynomials hn(x, y) reduces to the classical
Rogers-Szegö polynomials hn(x|q). Recall that hn(x|q) can be expressed in
terms of the q-shift operator T (Dq)x

n, where

T (Dq) =
∞∑
n=0

Dn
q

(q; q)n
.

The operator T (Dq) called the augmentation operator in [4], which can be
used to derive the generating function of hn(x|q):

∞∑
n=0

hn(x|q)tn

(q; q)n
=

1

(t; q)∞(xt; q)∞
(4.16)
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From (2.2), we obtain the following formula:

E(Dxy){Pn(x, y)} = hn(x, y|q). (4.17)

Next we present the generating function for the homogeneous Roger-Szegö
polynomials.

Theorem 4.10 We have

∞∑
n=0

hn(x, y|q)tn

(q; q)n
=

(yt; q)∞
(t; q)∞(xt; q)∞

.

Proof. By Proposition 4.9, we have

∞∑
n=0

hn(x, y|q)tn

(q; q)n
= E(Dxy)

{
Pn(x, y)tn

(q; q)n

}
= E(Dxy)

{
(yt; q)∞
(xt; q)∞

}
=

(yt; q)∞
(t; q)∞(xt; q)∞

.

This completes the proof.

Setting y = 1 in the above theorem, by Euler’s identity (1.5) we are led
to the evaluation hn(x, 1|q) = xn, which is the Cauchy identity (1.2).
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