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Abstract. We obtain an involution for a classical identity of Guass on the alternating
sum of the Gauss coefficients. It turns out that the refinement of our involution with
restrictions on the heights of Ferrers diagrams leads to a generalization of the Gauss
identity. Finally, we further extend the Gauss identity in which −1 is replaced by any
root of unity.
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1. Introduction

We follow the standard notation on q-series [1, 2]. The q-shifted factorials (a; q)n are
defined by

(a; q)n =

{
1, n = 0,

(1− a)(1− aq) · · · (1− aqn−1), n = 1, 2, . . . .

The q-binomial coefficients, or the Gauss coefficients, are given by[
n

k

]
or

[
n

k

]
q

=
(q; q)n

(q; q)k(q; q)n−k
.
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Note that the parameter q is often omitted in the notation of Gauss coefficients when
no confusion arises. The following classical identity is due to Gauss:

Theorem 1.1 (Gauss) We have

m∑
r=0

(−1)r
[
m

r

]
=

{
0, if m is odd,

(1− q)(1− q3) · · · (1− qm−1), if m is even.
(1.1)

There have been several proofs of this identity [1, 2]. Goldman and Rota [3] find
a proof by using a linear operator. Kupershmidt [4] obtains a generalization of the
Gauss identity with an additional variable x. In fact, Gauss’ identity is a by-product
of results of Littlewood [6] on the evaluation of symmetric functions at roots of unity,
and plethysm with power sums (cf. [5]). In this paper, we obtain a combinatorial proof
of this identity in terms of pairs of Ferrers diagrams. Based on our involution, we also
obtain a generalization of the Gauss identity with an additional parameter n (Theorem
2.2) through a refinement on the heights of the Ferrers diagrams. It turns out that
this generalization follows from a further extension of the Gauss identity in which −1
is replaced by any root of unity (Theorem 3.3) .

2. An Involution for the Gauss Identity

Our combinatorial setting for the proof of the Gauss identity is based on the following
equivalent form:

m∑
r=0

(−1)r
qr

(q; q)r
· qm−r

(q; q)m−r
=

0, if m is odd,
qm

(q2; q2)m/2
, if m is even.

(2.1)

We proceed to describe our involution for the above identity. First, let us recall the
standard notation on partitions as in [7]. The set of nonnegative integers is denoted
by N. A partition λ is a sequence of nonnegative integers

(λ1, λ2, . . . , λi, . . .) (2.2)

in decreasing order λ1 ≥ λ2 ≥ · · · with only a finite number of nonzero terms. If
λi = 0 for all i > n, we also write λ in the finite form (λ1, . . . , λn). In particular,
the partition (0, 0, . . .) is denoted by 0. The nonzero entries λi in (2.2) are called the
parts of λ. The number of parts and the sum of parts are called the length and the
weight of λ, denoted by `(λ) and |λ|, respectively. We also use the exponential notation
λ = 1m12m2 · · · rmr · · · to denote the partition with exactly mi parts equal to i.
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Let λ = (λ1, . . . , λi, . . .), µ = (µ1, . . . , µi, . . .) be two partitions. We define the
addition of λ and µ to be the partition λ + µ = (λ1 + µ1, . . . , λi + µi, . . .). The
subtraction of two partitions λ − µ is defined similarly if the resulting sequence is a
partition. The Ferrers diagram of a partition (λ1, λ2, . . .) of n is a left-justified array
of squares (also called cells) with λi squares in the i-th row.

Henceforth, fix a nonnegative integer m. Suppose that r ∈ N is such that r ≤ m.
Let Pr be the set of partitions λ with maximal part r. We define the two sets Wr and
W as follows:

Wr := {(λ, µ; r) : λ ∈ Pr, µ ∈ Pm−r}, W :=
m⋃
r=0

Wr.

It is easy to see that [1] ∑
λ∈Pr

q|λ| =
qr

(q; q)r
.

Thus the left hand side of (2.1) can be expressed as

m∑
r=0

(−1)r

(∑
λ∈Pr

q|λ|

) ∑
µ∈Pm−r

q|µ|


=

m∑
r=0

(−1)r
∑

(λ,µ;r)∈Wr

q|λ|+|µ|

=
∑

(λ,µ;r)∈W

(−1)rq|λ|+|µ|. (2.3)

For (λ, µ; r) ∈ W , let s = `(λ) and t = `(µ). We first define an involution σ : W 7−→
W . Then we show that this involution consists of two parts, one that is sign reversing,
the other the identity map. Therefore, the Gauss identity follows from the cancellation
in the expansion of the left hand side of (2.1).

Construction of the involution σ. An involution σ : W 7−→ W is constructed in
accordance with the following subcases for the lengths s and t:

Case 1: s < t

Let
λ′ = λ+ 1t, µ′ = µ− 1t, and r′ = r + 1.

Clearly, λ′ ∈ Pr′ and µ′ ∈ Pm−r′ . Since t > 0, r must be less than m and (λ′, µ′; r′) ∈ W
(The Ferrers diagrams are shown in Figure 1).

Case 2: s ≥ t
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Figure 1: Case `(λ) < `(µ).

Subcase 2.1: There exists at least one odd number among λt+1, . . . , λs.

Suppose λp is odd, while λp+1, . . . , λs are all even. Let

λ′ = λ− 1p, µ′ = µ+ 1p, and r′ = r − 1.

Since λp > 0, we have r = λ1 > 0. Therefore, (λ′, µ′; r′) ∈ W (see Figure 2).
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Figure 2: Case λp is odd.

Subcase 2.2: λt+1, . . . , λs are all even, and t > 0.

If λt is odd, similar to the above subcase, we define

λ′ = λ− 1t, µ′ = µ+ 1t, and r′ = r − 1.

Hence, (λ′, µ′; r′) ∈ W (see Figure 3).
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Figure 3: Case λt is odd.

If λt is even, similar to Case 1, we define

λ′ = λ+ 1t, µ′ = µ1 − 1t, and r′ = r + 1.
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Then, (λ′, µ′; r′) ∈ W (see Figure 4).
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Figure 4: Case λt is even.

Subcase 2.3: λ1, . . . , λs are all even, and t = 0.

Since t = 0, the partition µ is the zero partition, whose maximal part is regarded
as 0. From the definition of W , we have m− r = 0. For this case, we define the image
of (λ, 0;m) to be itself.

It is easy to verify that σ2 is the identity map on W :

• In Case 1, we have `(λ′) = t ≥ `(µ′) and λ′t = 1. Hence σ(λ′, µ′; r′) = (λ′−1t, µ′+
1t; r′ − 1) = (λ, µ; r).

• In Subcase 2.1, there are two possibilities. (1) `(λ′) ≥ p = `(µ′) > 0 and λ′i are all
even for i ≥ p. In this case, σ(λ′, µ′; r′) = (λ′ + 1p, µ′ − 1p; r′ + 1) = (λ, µ; r). (2)
`(λ′) < p = `(µ′). We also have σ(λ′, µ′; r′) = (λ′ + 1p, µ′ − 1p; r′ + 1) = (λ, µ; r).

• In Subcase 2.2, there are also two possibilities. (1) `(λ′) = `(λ). It is clear that
σ(λ′, µ′; r′) = (λ, µ; r). (2) `(λ′) < `(λ). Then s = t and λs = 1. Therefore,
`(λ′) < `(µ) = t and σ(λ′, µ′; r′) = (λ′ + 1t, µ′ − 1t; r′ + 1) = (λ, µ; r)

• In Subcase 2.3, σ is the identity map.

Therefore, σ2 is the identity map on W .

Combinatorial Proof of the Gauss identity. In the above construction of the involution
σ, it is clear that |λ′| + |µ′| = |λ| + |µ|. Furthermore, except for Subcase 2.3, we have
|r − r′| = 1, in other words, σ is sign-reversing, which implies that (−1)r

′
q|λ
′|+|µ′| +

(−1)rq|λ|+|µ| = 0. It follows that∑
(λ,µ;r)∈W

(−1)rq|λ|+|µ| =
∑

(λ, µ; r) being
fixed point of σ

(−1)rq|λ|+|µ| =
∑

(λ,0;m)∈W
λi all even

(−1)mq|λ|. (2.4)
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Since (λ, 0;m) ∈ W implies that m = λ1, (2.4) reduces to

∑
(λ,µ;r)∈W

(−1)rq|λ|+|µ| =


0, if m is odd,

qm

(q2; q2)m/2
, if m is even.

This completes the proof of (2.1).

The above involution, in fact, leads to stronger result which is a generalization of
the Gauss identity with an additional parameter n.

Theorem 2.1 Let n ∈ N. Then we have

m∑
r=0

(−1)r
[
n+ r

n

][
n+m− r

n

]
=


0, if m is odd,[
n+ m

2

n

]
q2
, if m is even.

(2.5)

Proof. Note that the above involution σ preserves the maximum value of the lengths
of λ and µ. Therefore, this involution can be restricted to partitions with length not
greater than n + 1, and the arguments can be effected as before. Let Pn,r be the set
of partitions with maximal component r and length not greater than n+ 1. Note that
the generating function of partitions in Pn,r is (see [8, Proposition 1.3.19])∑

λ∈Pn,r

q|λ| = qr
[
n+ r

n

]
. (2.6)

Thus we obtain (2.1).

The identity (1.1) is the limiting case of (2.5) by taking n→∞. We now reformu-
late Theorem 2.1 into a symmetric form:

Theorem 2.2 We have

m∑
r=0

(−1)r
(a; q)r
(q; q)r

(a; q)m−r
(q; q)m−r

=


0, if m is odd,

(a2; q2)m/2
(q2; q2)m/2

, if m is even.
(2.7)

Proof. We can rewrite the identity (2.5) as

m∑
r=0

(−1)r
(qn; q)r
(q; q)r

(qn; q)m−r
(q; q)m−r

=


0, if m is odd,

(q2n; q2)m/2
(q2; q2)m/2

, if m is even.
(2.8)
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Setting a = qn, by the continuation argument we obtain (2.5).

Note that the case of a = 0 in (2.7) specializes to the Gauss identity and the case
a =∞ reduces to the Gauss identity with parameter q replaced by q−1.

3. Generalization to a p-th root of unity

In this section, we consider a further extension of the Gauss identity to the p-th root of
the unit. This generalization reduces to Theorem 2.1 or (2.8) when p = 2. We first give
a bijective proof of this extension that is a refinement of the involution in the previous
section. For completeness, we also present an algebraic proof.

Theorem 3.1 Let ζ = e
2πi
p be the p-th root of unity. Then we have∑

r1+···+rp=m

ζr1+2r2+···+prp
[
n+ r1

n

][
n+ r2

n

]
· · ·
[
n+ rp
n

]

=


0, if p - m,[
n+ m

p

n

]
qp
, if p | m.

(3.1)

Proof. Let Pn,r be the set of partitions with maximal part r and length not greater
than n+ 1. Define the set W as

W := {(λ1, . . . , λp; r1, . . . , rp) : r1 + · · ·+ rp = m and λk ∈ Pn,rk},

and define the weight of x = (λ1, . . . , λp; r1, . . . , rp) ∈ W as

w(x) := ζr1+2r2+···+prpq|λ
1|+···+|λp|.

It follows from the generating function (2.6) that (3.1) is equivalent to the following
relation: ∑

x∈W

w(x) =


0, if p - m,∑
λ∈Pn,m/p

qp|λ|, if p | m.

Let a (0 ≤ a < p) denote the remainder of a modulo p. Define

Wh := {(λ1, . . . , λp; r1, . . . , rp) ∈ Wm :

h is the smallest integer such that λ1
k = λ2

k = · · · = λpk = 0, ∀ k > h},
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and

Wh,s := {(λ1, . . . , λp; r1, . . . , rp) ∈ Wh :

s is the smallest integer such that λ1
h + λ2

h + · · ·+ λsh ≥ p− s+ 1},

where λij denote the j-th part of the partition λi. Noting that λ1
h < p, Wh,1 = ∅ for

any h > 0, we have

W =
n+1⋃
h=0

Wh = W0

⋃(
n+1⋃
h=1

p⋃
s=2

Wh,s

)
,

where
⋃

denotes the disjoint union.

We now focus on Wh,s with h > 0 and s ≥ 2. For x = (λ1, . . . , λp; r1, . . . , rp) ∈ Wh,s,
let

dx := (p− s+ 1)− (λ1
h + λ2

h + · · ·+ λs−1
h ),

Ix := (λ1
h, λ

2
h, . . . , λ

s−1
h , dx).

From the definition of Wh,s, we have

λ1
h + λ2

h + · · ·+ λs−1
h < p− (s− 1) + 1 = p− s+ 2,

which implies Ix ∈ Ns. Moreover, the following relation holds:

λsh − dx = (λ1
h + λ2

h + · · ·+ λsh)− (p− s+ 1) ≥ 0.

Next, for each I = (i1, . . . , is) ∈ Ns with |I| = i1 + · · ·+ is = p− s+ 1, define

Wh,s,I := {x ∈ Wh,s : Ix = I}.

Since Ix is uniquely determined by x, we find that Wh,s is the disjoint union of Wh,s,I :

Wh,s =
⋃
I∈Ns

|I|=p−s+1

Wh,s,I .

For I = (i1, . . . , is), J = (j1, . . . , js) ∈ Ns with |I| = |J | = p− s+ 1, there is a bijection
σI,J from Wh,s,I to Wh,s,J defined by

σI,J : Wh,s,I → Wh,s,J

x 7→ y,

where
x = (λ1, . . . , λp; r1, . . . , rp), y = (µ1, . . . , µp; r′1, . . . , r

′
p),

8



µk =

{
λk − (ik)

h + (jk)
h, if 1 ≤ k ≤ s,

λk, s < k ≤ p,

r′k =

{
rk − ik + jk, if 1 ≤ k ≤ s,

rk, s < k ≤ p.

We can show that σI,J is well defined, that is, y ∈ Wh,s,J . Since Ix = I, we have

λ1
h ≥ λ1

h = i1, λkh = ik for k = 2, . . . , s− 1, λsh ≥ dx = is.

Since λ1
k = λ2

k = · · · = λpk = 0 for k > h, the λk − (ik)
h is well defined, as well as

µk = λk − (ik)
h + (jk)

h. Furthermore, the maximal part of µk is rk − ik + jk = r′k.
Therefore, y ∈ W . It is easy to see that

(µ1
h, µ

2
h, . . . , µ

s
h) = (j1, . . . , js−1, (λ

s
h − ds) + js). (3.2)

Since J 6= 0, (µ1
h, µ

2
h, . . . , µ

s
h) 6= 0, it follows that y ∈ Wh. Noting that µ1

h + µ2
h + · · ·+

µth ≤ |J | < p− t+1 for t < s and µ1
h+µ2

h+ · · ·+µsh = λ1
h+λ2

h+ · · ·+λsh ≥ p−s+1, we
have y ∈ Wh,s. Moreover, from (3.2) and |Iy| = |J | = p− s+ 1, it follows that Iy = J ,
that is, y ∈ Wh,s,J . Thus, we have shown that σI,J is a well defined map from Wh,s,I to
Wh,s,J .

It is a routine to verify that σI,J ◦σJ,I and σJ,I ◦σI,J are the identity maps on Wh,s,I

and Wh,s,J , respectively. Then it follows that σI,J is a bijection from Wh,s,I to Wh,s,J .
Moreover, we have that

w(σI,J(x)) = w(y)

= ζr
′
1+2r′2+···+pr′pq|µ

1|+···+|µp|

= ζr1+2r2+···+prpζ−(i1+2i2+···+sis)ζj1+2j2+···+sjsq|λ
1|+···+|λp|

= ζ−(i1+2i2+···+sis)w(x)ζj1+2j2+···+sjs .
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Denote I0 = (p − s + 1, 0, . . . , 0) ∈ Ns. Using the bijection σI0,J , we obtain the
following sequence of identities:∑

x∈Wh,s

w(x) =
∑
J∈Ns

|J |=p−s+1

∑
x∈Wh,s,J

w(x)

=
∑
J∈Ns

|J |=p−s+1

∑
x∈Wh,s,I0

w(σI0,J(x))

=
∑
J∈Ns

|J |=p−s+1

∑
x∈Wh,s,I0

ζ−(p−s+1)w(x)ζj1+2j2+···+sjs

=
∑

x∈Wh,s,I0

ζ−(p−s+1)w(x)
∑
J∈Ns

|J |=p−s+1

ζj1+2j2+···+sjs .

The second summation can be computed as follows:∑
J∈Ns,|J |=p−s+1

tj1+2j2+···+sjs =
∑

λ=1j12j2 ···sjs
j1+···+js=p−s+1

t|λ|

=
∑

`(λ)=p−s+1
each part ≤ s

t|λ|

=
∑
`(λ)≤s

maximal part is p− s+ 1

t|λ|

=
∑

λ∈Ps−1,p−s+1

t|λ|

= tp−s+1 (t; t)p
(t; t)s−1(t; t)p−s+1

.

Since 1− ζp = 0 and 1− ζk 6= 0 for k = 1, . . . , p− 1, we obtain∑
J∈Ns

|J |=p−s+1

ζj1+2j2+···+sjs = 0, ∀ 2 ≤ s ≤ p,

which implies that
∑

x∈Wh,s
w(x) vanishes for all h > 0 and 2 ≤ s ≤ p. Therefore,∑

x∈W

w(x) =
∑
x∈W0

w(x).

By definition,

W0 = {(λ, 0, . . . , 0;λ1, 0, . . . , 0) ∈ W : λ1 = m and p | λi ∀ i ≥ 1}.
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If p - m, W0 is the empty set. Otherwise, there is a bijection between W0 and Pn,m/p,
obtained by dividing each part of λ by p. Hence,

∑
x∈W0

w(x) =


0, if p - m,∑
λ∈Pn,m/p

qp|λ|, if p | m.

This completes the combinatorial proof.

Setting n→∞, we obtain a further generalization of the Gauss identity.

Corollary 3.2 Let ζ = e
2πi
p be the p-th root of unity. Then we have

∑
r1+···+rp=m

ζr1+2r2+···+prp
[

m

r1, . . . , rp

]
=


0, if p - m,∏
1≤k≤m
p-k

(1− qk), if p | m,

where [
m

r1, . . . , rp

]
=

(q; q)m
(q; q)r1 · · · (q; q)rp

is a q-multinomial coefficient.

As a further generalization of Theorem 2.2, we have

Theorem 3.3 Let ζ = e
2πi
p be the p-th root of unity. Then we have

∑
r1+···+rp=m

ζr1+2r2+···+prp (a; q)r1
(q; q)r1

· · ·
(a; q)rp
(q; q)rp

=


0, if p - m,

(ap; qp)m/p
(qp; qp)m/p

, if p | m.

To conclude this paper, we present an algebraic proof of Theorem 3.3 from the
Cauchy identity (q-binomial theorem):

∞∑
r=0

(a; q)r
(q; q)r

tr =
∞∏
r=0

(1− atqr)
(1− tqr)
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Algebraic Proof of Theorem 3.3. Let ζ = e
2πi
p be the p-th root of unity. From the

Cauchy identity it follows that

∞∏
r=0

(1− atqr)
(1− tqr)

·
∞∏
r=0

(1− aζtqr)
(1− ζtqr)

· · ·
∞∏
r=0

(1− aζp−1tqr)

(1− ζp−1tqr)

=
∞∑
r=0

(a; q)r
(q; q)r

tr ·
∞∑
r=0

(a; q)r
(q; q)r

(ζt)r · · ·
∞∑
r=0

(a; q)r
(q; q)r

(ζp−1t)r

=
∞∑
r=0

(a; q)r
(q; q)r

(ζt)r ·
∞∑
r=0

(a; q)r
(q; q)r

(ζ2t)r · · ·
∞∑
r=0

(a; q)r
(q; q)r

(ζpt)r

=
∞∑
m=0

tm
∑

r1+···+rp=m

(a; q)r1
(q; q)r1

· · ·
(a; q)rp
(q; q)rp

ζr1+2r2+···+prp .

On the other hand, from the relation 1− xp = (1− x)(1− ζx) · · · (1− ζp−1x) and the
Cauchy identity, we obtain

∞∏
r=0

(1− atqr)
(1− tqr)

·
∞∏
r=0

(1− aζtqr)
(1− ζtqr)

· · ·
∞∏
r=0

(1− aζp−1tqr)

(1− ζp−1tqr)

=
∞∏
r=0

(1− atqr)(1− ζatqr) · · · (1− ζp−1atqr)

(1− tqr)(1− ζtqr) · · · (1− ζp−1tqr)

=
∞∏
r=0

1− (atqr)p

1− (tqr)p

=
∞∏
r=0

1− aptp(qp)r

1− tp(qp)r

=
∞∑
r=0

(ap; qp)r
(qp; qp)r

(tp)r.

Comparing the coefficients of tm, we arrive at Theorem 3.3.

More generally, Littlewood [6] obtained the image of any Schur function under the
morphism

pk →

{
ppk, if p divides k,

0, otherwise,

where p1,p2, . . . ,pk, . . . are the power sums.
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The case treated in Theorem 3.3 corresponds to the specialization of a complete
function under

pk →

{
p (1− ak)(1− qk)−1, if p divides k,

0, otherwise.
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