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Abstract. The Ramanujan polynomials were introduced by Ramanujan in his s-
tudy of power series inversions. In an approach to the Cayley formula on the number of
trees, Shor discovers a refined recurrence relation in terms of the number of improper
edges, without realizing the connection to the Ramanujan polynomials. On the other
hand, Dumont and Ramamonjisoa independently take the grammatical approach to a
sequence associated with the Ramanujan polynomials and have reached the same con-
clusion as Shor’s. It was a coincidence for Zeng to realize that the Shor polynomials
turn out to be the Ramanujan polynomials through an explicit substitution of param-
eters. Shor also discovers a recursion of Ramanujan polynomials which is equivalent
to the Berndt-Evans-Wilson recursion under the substitution of Zeng, and asks for a
combinatorial interpretation. The objective of this paper is to present a bijection for
the Shor recursion, or and Berndt-Evans-Wilson recursion, answering the question of
Shor. Such a bijection also leads to a combinatorial interpretation of the recurrence
relation originally given by Ramanujan.
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1 Introduction

The original Ramanujan polynomials ψk(r, x), where r is any nonnegative integer and
1 ≤ k ≤ r + 1, are defined by the following generating function equation:

∞∑
k=0

(x+ k)r+ke−u(x+k)uk

k!
=

r+1∑
k=1

ψk(r, x)

(1− u)r+k
. (1.1)

Ramanujan gives a recurrence relation of ψk(r, x) as follows:

ψk(r + 1, x) = (x− 1)ψk(r, x− 1) + ψk−1(r + 1, x)− ψk−1(r + 1, x− 1). (1.2)

where 1 ≤ k ≤ r + 1, ψ1(0, x) = 1, and ψk(r, x) = 0 if k 6∈ [r + 1]. Note that here we
have adopted the standard notation [n] := {1, 2, . . . , n} for a positive integer n.

Berndt et al. [1, 2] find an elegant proof of (1.1) justifying the existence of the
polynomials ψk(r, x) and obtain the following recurrence relation:

ψk(r, x) = (x− r − k + 1)ψk(r − 1, x) + (r + k − 2)ψk−1(r − 1, x), (1.3)

where the initial value of ψk(r, x) and the ranges of indices are given as above.

It is worth noting that the Ramanujan polynomials satisfy the following identity:

r+1∑
k=1

ψk(r, x) = xr. (1.4)

Table of ψk(r, x).

k\r 0 1 2 3 4
1 1 x− 1 x2 − 3x + 2 x3 − 6x2 + 11x− 6 x4 − 10x3 + 35x2 − 50x + 24
2 1 3x− 5 6x2 − 26x + 26 10x3 − 80x2 + 200x− 154
3 3 15x− 35 45x2 − 255x + 340
4 15 105x− 315
5 105∑

k 1 x x2 x3 x4

It turns out that the Ramanujan polynomials coincide with the polynomials Qn,k(x)
introduced by Shor [5], where n ≥ 1, and 0 ≤ k ≤ n − 1. Moreover, for n = 0 or
k 6∈ [n− 1], we define Qn,k(x) to be zero. Shor’s recursive definition of Qn,k(x) goes as
follows:

Qn,k(x) = (x+ n− 1)Qn−1,k(x) + (n+ k − 2)Qn−1,k−1(x), (1.5)
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for n ≥ 1 and k ≤ n − 1, where Q1,0(x) = 1 and Qn,k(x) = 0 if k ≥ n or k < 0. Zeng
[6, Proposition 7] establishes the following remarkable connection:

Qn,k(x) = ψk+1(n− 1, x+ n). (1.6)

The tree enumeration flavor of Qn,k(x) is evidenced by the following identity:

n−1∑
k=0

Qn,k(x) = (x+ n)n−1. (1.7)

Table of Qn,k(x).

k\n 1 2 3 4 5
0 1 x + 1 x2 + 3x + 2 x3 + 6x2 + 11x + 6 x4 + 10x3 + 35x2 + 50x + 24
1 1 3x + 4 6x2 + 22x + 18 10x3 + 70x2 + 150x + 96
2 3 15x + 25 45x2 + 195x + 190
3 15 105x + 210
4 105∑

k 1 x + 2 (x + 3)2 (x + 4)3 (x + 5)4

In his approach to the enumeration of trees, Shor [5] has considered the following
recurrence relation:

fn,k = (n− 1)fn−1,k + (n+ k − 2)fn−1,k−1, (1.8)

where f1,0 = 1, n ≥ 1, k ≤ n − 1, and fn,k = 0 otherwise. One sees that fn,k is the
value of Qn,k(x) evaluated at x = 0, and that fn,k satisfies the following identity:

n−1∑
k=0

fn,k = nn−1. (1.9)

Shor shows that fn,k is in fact the number of rooted trees on [n] with k improper edges.
However, he did not seem to have noticed the connection of his formula to the work of
Ramanujan. On the other hand, Dumont and Ramamonjisoa [4] use the grammatical
method introduced by Chen in [3] to obtain the same combinatorial interpretation.

Besides the recurrence relation (1.5) for Qn,k(x), Shor [5] derives the following
recurrence relation, and asks for a combinatorial interpretation:

Qn,k(x) = (x− k + 1)Qn−1,k(x+ 1) + (n+ k − 2)Qn−1,k−1(x+ 1). (1.10)

The above recurrence relation turns out to be equivalent to the Berndt-Evans-Wilson
recursion (1.3) by the substitution (1.6) of Zeng.

The aim of this paper is to construct a bijection for (1.10), answering the question
of Shor. We note that the above relation is indeed the same as the recurrence relation
(1.2) under the substitution (1.6) of Zeng. Therefore, we also obtain a combinatorial
interpretation of the recurrence relation (1.2) originally presented by Ramanujan.
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2 The Zeng Interpretations and the Shor Recursion

We will follow most notation in Zeng [6]. The set of rooted labeled trees on [n] is
denoted by Rn . If T ∈ Rn, and x is a node of T , the subtree rooted at x is denoted
by Tx. We let β(x), or βT (x) be the smallest node on Tx. For notational simplicity,
we also use βT or β(T ) to denote the minimum element in T , and we sometimes write
T (x) for Tx in the purpose of avoiding multiple subscripts. We say that a node z of
T is a descendant of x, (or x is an ancestor of z), if z is a node of Tx. In particular,
each node is a descendant of itself. For any edge e = (x, y) of a tree T , if y is a node
of Tx, we call x the father node of e, y the child node of e, x the father of y, and y a
child of x. Assume e = (x, y) is an edge of a tree T , and y is the child node of e, we
say that e is a proper edge, if x < βT (y). Otherwise, we call e an improper edge. The
degree of a node x in a rooted tree T is the number of children of x, and is denoted
by deg(x), or degT (x). An unrooted labeled tree will be treated as a rooted tree in
which the smallest node is chosen as the root. Then the above definitions are still
valid for unrooted trees. Denote by Tn,k and Rn,k the sets of labeled trees and rooted
labeled trees on [n] with k improper edges, respectively. Moreover, we may impose
some conditions on the sets Tn,k and Rn,k to denote the subsets of trees that satisfy
these conditions. For example, Tn+1,k[deg(n + 1) = 0] stands for the subset of Tn+1,k

subject to the condition deg(n+ 1) = 0.
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Figure 1: Improper Edges Shown as Double Edges

Theorem 2.1 (Zeng[6, Propositions 1, 2, 7]) The polynomials Qn,k(x) have the
following interpretations:

Qn,k(x) =
∑

T∈Tn+1,k

xdegT (1)−1. (2.1)

Qn,k(x) =
∑

T∈Rn,k

(x+ 1)degT (1). (2.2)
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In fact, the above theorem can be reformulated by the following relations:

(x+ n− 1)Qn−1,k(x) =
∑

T∈Tn+1,k[deg(n+1)=0]

xdegT (1)−1, (2.3)

(n+ k − 2)Qn−1,k−1(x) =
∑

T∈Tn+1,k[deg(n+1)>0]

xdegT (1)−1. (2.4)

Zeng [6] proves the two interpretations (2.1) and (2.2) of Qn,k(x) by similar argu-
ments. One naturally expects to make a combinatorial connection bridging these two
formulations, and this consideration was mentioned by Zeng. We now provide such an
argument for the equivalence between (2.1) and (2.2), that is,∑

T∈Tn+1,k

xdegT (1)−1 =
∑

T∈Rn,k

(x+ 1)degT (1). (2.5)

Proof. Let us consider the binomial expansion of the right hand side of (2.5). The
binomial expansion can be visualized by coloring the children of the node 1 with black
and white colors. Let T be a rooted tree inRn,k, and let T have the children of 1 colored
in either black or white. Let B be the set of children of 1 in T which are colored in
black. Now we may introduce a new node 0, and move the subtrees of T rooted at the
nodes in B as the subtrees of 0, and moreover, move the remaining subtree of T as a
subtree of 0. Therefore, we obtain a rooted tree on {0, 1, 2, . . . , n}, say T ′. Note that
the children of 0 which come from the black nodes can be easily distinguished from the
child of 0 which is the original root of T because the node 1 remains in the subtree of
original root. Finally, if we relabel the set {0, 1, 2, . . . , n} by the set [n + 1], namely,
relabeling i by i + 1, we get an unrooted tree on [n + 1] which preserves the number
of improper edges. Furthermore, one sees that the above construction can be reversed.
This completes the proof.

Corrolary 2.2 We have

Qn,k(x− 1) =
∑

T∈Tn+1,k[deg(2)=0]

xdegT (1)−1. (2.6)

Proof. It follows from (2.2) that

Qn,k(x− 1) =
∑

T∈Rn,k

xdegT (1). (2.7)

We now construct a bijection from Rn,k[deg(1) = r] to Tn+1,k[deg(1) = r + 1, deg(2) =
0]. Given T ∈ Rn,k[deg(1) = r], we now introduce a new root 0, and put T as a subtree
of 0. Then we move all the subtrees of 1 and make them as subtrees of 0. Finally, by
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relabeling a node i by i + 1, we obtain a tree T ′ ∈ Tn+1,k[deg(1) = r + 1, deg(2) = 0].
It is clear that the construction is reversible. This completes the proof.

Substituting k by k + 1 in (2.4), we obtain

(n+ k − 1)Qn−1,k(x) =
∑

T∈Tn+1,k+1[deg(n+1)>0]

xdegT (1)−1. (2.8)

We are now ready to give another combinatorial formulation of the Shor recurrence
relation (1.10). Rewriting (1.10), by substituting x with x− 1, we get:

Qn,k(x− 1) = (x− k)Qn−1,k(x) + (n+ k − 2)Qn−1,k−1(x). (2.9)

If we express the term (x− k)Qn−1,k(x) as

(x+ n− 1)Qn−1,k(x)− [n+ (k + 1)− 2]Qn−1,(k+1)−1(x) ,

then the Shor recurrence relation (1.10) is equivalent to the following combinatorial
identity.

Theorem 2.3 For n ≥ 1, and 0 ≤ k ≤ n− 1, we have∑
T∈Tn+1,k[deg(2)>0]

xdegT (1)−1 =
∑

T∈Tn+1,k+1[deg(n+1)>0]

xdegT (1)−1. (2.10)

We now present an inductive proof of the above fact, while the next section will be
engaged in a purely combinatorial treatment. Clearly, for n ≥ 1, (2.10) can be restated
as follows with the notation Tn,k[· · ·] := |Tn,k[· · ·]|:

Tn+1,k[deg(2) > 0, deg(1) = r] = Tn+1,k+1[deg(n+ 1) > 0, deg(1) = r]. (2.11)

Proof. For n ≥ 2, the arguments of Shor [5] or Zeng [6] imply the following identities:

(i) Tn+1,k+1[deg(n+ 1) > 0, deg(1) = r] = (n+ k − 1)Tn,k[deg(1) = r].

(ii) Tn+1,k[deg(2) > 0, deg(1) = r]

= (n− 2)Tn,k[deg(2) > 0, deg(1) = r] + Tn,k[deg(2) > 0, deg(1) = r − 1]

+Tn,k[deg(1) = r] + (n+ k − 2)Tn,k−1[deg(2) > 0, deg(1) = r].

(iii) Tn+1,k[deg(1) = r]

= (n− 1)Tn,k[deg(1) = r] + Tn,k[deg(1) = r − 1]

+ (n+ k − 2)Tn,k−1[deg(1) = r].
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Because of (i), (2.11) can be deduced from the following relation:

Tn+1,k[deg(2) > 0, deg(1) = r] = (n+ k − 1)Tn,k[deg(1) = r], (2.12)

for n ≥ 1. The above claimed identity obviously holds for n = 1. Suppose (2.12) holds
for n− 1. From (i) – (iii) and the inductive hypothesis, it follows that

Tn+1,k[deg(2) > 0, deg(1) = r]

= (n− 2)Tn,k[deg(2) > 0, deg(1) = r] + Tn,k[deg(2) > 0, deg(1) = r − 1]

+Tn,k[deg(1) = r] + (n+ k − 2)Tn,k−1[deg(2) > 0, deg(1) = r]

= (n− 2)(n+ k − 2)Tn−1,k[deg(1) = r] + (n+ k − 2)Tn−1,k[deg(1) = r − 1]

+Tn,k[deg(1) = r] + (n+ k − 2)(n+ k − 3)Tn−1,k−1[deg(1) = r]

= (n+ k − 2){(n− 2)Tn−1,k[deg(1) = r] + Tn−1,k[deg(1) = r − 1]

+(n+ k − 3)Tn−1,k−1[deg(1) = r]}+ Tn,k[deg(1) = r]

= (n+ k − 2)Tn,k[deg(1) = r] + Tn,k[deg(1) = r]

= (n+ k − 1)Tn,k[deg(1) = r].

Thus (2.12) holds for n. This completes the proof.

We further remark that the following recurrence relations presented by Zeng [6] also
follow from the above combinatorial identity:

Qn,k(x) = (x+ n− 1)Qn−1,k(x) +Qn,k−1(x)−Qn,k−1(x− 1), (2.13)

Qn,k(x) = Qn,k(x− 1) + (n+ k − 1)Qn−1,k(x). (2.14)

Note that the recurrence relation (2.13) is equivalent to the original Ramanujan
recursion (1.2). A bijective proof of (2.10) will be the objective of the next section.

3 The Bijections

In order to demonstrate (2.10) combinatorially, it would be ideal to directly construct
a bijection from Tn+1,k[deg(2) > 0] to Tn+1,k+1[deg(n + 1) > 0] which preserves the
degree of 1. Although it looks that such a bijection should be easy to construct by
moving a child of 2 in a tree in Tn+1,k[deg(2) > 0] to the node n+ 1, achieving such a
task turns out to be quite subtle. To achieve this goal, we first find a stronger bijection
on rooted trees subject to certain degree constraints.
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Theorem 3.1 For n ≥ 1 and 0 ≤ k < n, we have the following bijection:

Rn,k[deg(1) > 0]←→ Rn,k+1[deg(n) > 0]. (3.1)

Here is an example for n = 4, k = 1. There are 16 trees for each side of (3.1). The
trees in R4,1[deg(1) > 0] are listed in Figure 2.
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Figure 2: 16 trees in R4,1[deg(1) > 0]

The trees in R4,2[deg(4) > 0] are in Figure 3.

Before we start our journey of constructing the bijection, we present an inductive
proof. In principle, it follows from Theorem 2.3 for the case degT (1) = 1. For com-
pleteness, we include the inductive proof which is slightly simpler than that of (2.11).

Inductive Proof of Theorem 3.1. For n ≥ 2, the arguments of Shor [5] or Zeng [6]
imply the following identities:

(i) Rn,k+1[deg(n) > 0] = (n+ k − 1)Rn−1,k.

(ii) Rn,k[deg(1) > 0]

= (n− 2)Rn−1,k[deg(1) > 0] +Rn−1,k

+ (n+ k − 2)Rn−1,k−1[deg(1) > 0].

(iii) Rn,k = (n− 1)Rn−1,k + (n+ k − 2)Rn−1,k−1.

Because of (i), Rn,k[deg(1) > 0] = Rn,k+1[deg(n) > 0] can be deduced from the following
relation:

Rn,k[deg(1) > 0] = (n+ k − 1)Rn−1,k, (3.2)
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Figure 3: 16 trees in R4,2[deg(4) > 0]

for n ≥ 1. The above claimed identity obviously holds for n = 1. Suppose (3.2) holds
for n− 1. From (i) – (iii) and the inductive hypothesis, it follows that

Rn,k[deg(1) > 0]

= (n− 2)Rn−1,k[deg(1) > 0] +Rn−1,k + (n+ k − 2)Rn−1,k−1[deg(1) > 0]

= (n− 2)(n+ k − 2)Rn−2,k +Rn−1,k + (n+ k − 2)(n+ k − 3)Rn−2,k−1

= (n+ k − 2){(n− 2)Rn−2,k + (n+ k − 3)Rn−2,k−1}+Rn−1,k

= (n+ k − 2)Rn−1,k +Rn−1,k

= (n+ k − 1)Rn−1,k.

This completes the proof.

We note that for k = n − 1, there does not exist any rooted tree T with n nodes
and k improper edges such that degT (1) > 0, because any edge with 1 as the father
node is proper. Thus, we may assume without loss of generality that k < n− 1.

It turns out that we need to consider two major cases in the construction of a
bijection for (3.1). First, we introduce the notation R(i)

n,k for the set of trees T in Rn,k

such that there are i proper edges on the path from the node n to the root. Suppose T
is a rooted tree on [n] and x is a node of T such that Tx contains the node n. Then we
may define the lowering operation L on Tx such that L(Tx) is the rooted tree obtained
from Tx by taking n as the new root and letting the ancestor nodes of n fall down to the
descendants of n. Under certain circumstances, the lowering operation is reversible,

9



and the reverse will be called the lifting operation. The following Theorem 3.2 tells us
where we may apply the lowering operations that are reversible. We need to define the
upper critical node and the lower critical node of a rooted tree T .

If T is a rooted tree in R(i)
n,k, where i ≥ 1. Suppose (n = v1, v2, . . . , vt) is the path

from n to the root of T , and vj is the first node on the path such that (vj−1, vj) is a
proper edge of T . Then we call vj the upper critical node of T . On the other hand,
for any rooted tree T on [n] such that degT (n) > 0, we define the lower critical node
of T by the following procedure. First, we note that β(n) < n. By abuse of the above
indices t and j, we assume that (n = u1, u2, . . . , ut = β(n)) is the path from n to β(n)
and that uj 6= n is the first node on the path such that every node in Tn−Tuj , namely,
the tree obtained from Tn by removing the subtree Tuj , is greater than uj, denoted

uj < β(Tn − Tuj).

Note that such a node uj must exist because the node β(n) is always a candidate to
satisfy the above condition. The lower critical node of T will be denoted by λ(T ), or
λ for short, if no confusion arises in the context.
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Figure 4: Lowering and Lifting Operations

With the aid of the lifting and lowering operations, we may establish the following
bijection which serves as the first case for the bijection (3.1).

Theorem 3.2 For i ≥ 1, we have the following bijection:

R(i)
n,k[deg(1) > 0]←→ R(i−1)

n,k+1[deg(n) > 0, (deg(1) > 0 or λ = 1)]. (3.3)

Proof. Suppose T is tree in R(i)
n,k[deg(1) > 0]. We assume that (n = v1, v2, . . . , vt) is

the path from n to the root of T , and vj is the upper critical node of T . We now apply
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the lowering operation L on T (vj). We then obtain a rooted tree T ′ by substituting the
subtree T (vj) with L(T (vj)). Note that the resulting tree T ′ has one more improper
edge than T because the edge (vj, vj−1) is proper in T and the edge (vj−1, vj) is improper
in T ′. Moreover, we notice that after the lowering operation, the degree of n increases
by 1, the degree of the upper critical node decreases by 1, and the degree of any other
node remains unchanged. Therefore, if we have degT ′(1) = 0, then 1 must be the upper
critical node of T because degT (1) > 0.

We now face the task of recovering the original tree T from the tree T ′ and convinc-
ing ourselves of the fact that the upper critical node of T becomes the lower critical
node of T ′. In order to single out the upper critical node of T in the new environment
of T ′, we first claim that the upper critical node of T , say w, has to be on the path
from n to β(n) in T ′. Assume that v is the child of w that is on the path from w to
n. By the definition of w, one sees that w < β(Tv). Therefore, after the application of
the lowering operation, w has to be on the path from n to β(n).

We now assume that (n, u1, u2, . . .) is the path from n to β(n) in T ′. If u1 <
β(T ′n − T ′u1), then one sees that (u1, n) is a proper edge in T and one can lift the edge
(u1, n) up and to restore w as the upper critical node of T . Otherwise, we may consider
the next candidate u2, and so on. Such a process shows that the upper critical node
of T can be identified by the lower critical node of T ′. This completes the proof.

The next case we should consider is the following theorem.

Theorem 3.3 For n ≥ 1 and m ≥ 1, we have the following bijection:

R(0)
n,k[deg(1) = m]←→ R(m−1)

n,k+1 [deg(n) > 0, (deg(1) = 0 and λ > 1)]. (3.4)

Note that Theorems 3.2 and 3.3 together lead to a refined version of Theorem 3.1.
We now focus on the proof of (3.4). The proof of (3.3) actually implies the following
assertion:

Lemma 3.4 For i ≥ 1,m ≥ 1, we have the following bijection:

R(i)
n,k[deg(n) = m, deg(1) = 0, λ > 1]←→

R(i−1)
n,k+1[deg(n) = m+ 1, deg(1) = 0, λ > 1]. (3.5)

By iteration, for any m ≥ 1 it follows that

R(m−1)
n,k+1 [deg(1) = 0, deg(n) ≥ 1, λ > 1]

11



←→ R(0)
n,k+m[deg(1) = 0, deg(n) ≥ m,λ > 1]. (3.6)

Because of the above bijection, one sees that Theorem 3.3 is equivalent to the
following statement.

Theorem 3.5 For n ≥ 1 and m ≥ 1, we have the following bijection:

R(0)
n,k[deg(1) = m]←→ R(0)

n,k+m[deg(1) = 0, deg(n) ≥ m,λ > 1]. (3.7)

We now run short of notation and terminology for our unaccomplished mission, and
here are more in need.

• α = αT := max{βT (b) : b is a child of the node n}, for T ∈ Rn,k[deg(n) > 0].
such that degT (n) > 0.

• β∗ = β∗
T

:= min{β
T
(a) : a is a child of the node 1}, for T ∈ Rn,k[deg(1) > 0].

• x ≺ y denotes that x is a descendant of y, while x 6≺ y means the opposite.

• If we cut off a subtree from a node u and join it to another node v as a subtree,
we will simply say that the subtree is moved to another node, or we move the
subtree to another node.

Note that, for any T ∈ R(0)
n,k, the node 1 cannot be on the path from n to the root,

namely, n 6≺ 1. Also, if T ∈ R(0)
n,k, then we have deg(n) > 0; Otherwise, the first edge

on the path from n to the root would be proper. Therefore, α is always well-defined
for a tree T ∈ R(0)

n,k, and if 1 6≺ n, we have λT > 1.

The following lemma is crucial.

Lemma 3.6 We have the following bijection:

Rn,k[deg(1) = 1, β∗ = w]←→ Rn,k+1[deg(1) = 0, µ = w], (3.8)

where µ(T ) is defined for any rooted tree in which 1 is not the root of T . We suppose
that (u1 = 1, u2, . . . , ut = v) is the path from 1 to the root of T . Then µ(T ) = uj
denotes the first node on the path with uj > 1 such that

uj < β(Tv − Tuj). (3.9)

Moreover, we always assume that v satisfies the above condition (3.9).

12



Proof. Suppose T ∈ Rn,k[deg(1) = 1, β∗ = w], where w ≥ 2. Let v be the unique
child of 1, and P : (v1, v2, . . . , vt = 1) the path from the root of T to 1. The scheme of
the construction consists of the following steps:

• Cut off the edge (1, v) and get a tree S = T − Tv.

• Cut off some edges on the path from v1 to 1 to get a forest, say R1, R2, . . . , Rs,
subject to some conditions to be spelled out later.

• Obtain a tree T ′ from Tv by joining the each Ri as a subtree of the node βT (v)
in Tv.

The tree T ′ constructed above will be the goal of our bijection. We now make it
precise.

First, if v1 < w then set j1 = 1. Otherwise, we choose j1 as the minimum index
such that

vj1 < β(T (v1)− T (vj1)), and vj1 < w. (3.10)

Because vt = 1 is on the path P , j1 can be determined. Second, we find all indices
j > j1 according to the following condition

vj < β(T (v1)− T (vj)), (3.11)

and denote by j2, j3, . . . , js = t, where j2 < j3 < · · · < js, the solutions to the above
inequality (3.11). Third, set j0 = 0, vt+1 = v and

Ri = T (vji−1+1)− T (vji+1), 1 ≤ i ≤ s,

namely,

R1 = T (v1)− T (vj1+1), R2 = T (vj1+1)− T (vj2+1), . . . , Rs = T (vjs−1+1)− T (v).

Fourth, we construct a tree T ′ from the above decomposition of T−Tv intoR1, R2, . . . , Rs

as claimed before.

Let us now take a close look at T and T ′. Obviously, all the edges on the path
from v1 to vt = 1 in T are improper. When we cut T − Tv into s pieces R1, R2, . . . , Rs,
we lose s− 1 improper edges. By the definition of j1, j2, . . . , js, namely, the conditions
(3.10) and (3.11), one sees that vj1 < w. Since j2 > j1, the node vj1 must be a node in
T (v1)− T (vj2). It follows that

vj2 < β(T (v1)− T (vj2)) ≤ vj1 .
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The same reasoning leads to order relation:

w > vj1 > vj2 > · · · > vjs = 1.

Therefore, when joining R1, R2, . . . , Rs as the subtrees of w = β(Tv) in Tv, we gain s
improper edges. Taking the previously lost improper edges into consideration, one sees
that T ′ has one more improper edge than T .

We now come to the justification of the fact that the node w in T can be recovered
as the node µ(T ′). From the above construction, one sees that w is a node on the path
from the node 1 to the root. Moreover, w satisfies condition (3.9). We now need to
show that except for 1, there is no other node vj on the path from 1 to w satisfying the
same condition (3.9). Suppose that vj is such a node, namely, vj < β(T ′(v)− T ′(vj)).
Since w is the minimum node in Tv, we have

β(T ′(v)− T ′(vj)) = β(T ′(w)− T ′(vj))

Thus, we obtain
vj < β(T (v1)− T (vj)), and vj < w. (3.12)

Let us consider what happens to the nodes on the path from 1 to the root in the above
subtree Rs = T (vjs−1+1)−T (v). Suppose vj is such a node where js−1 +1 ≤ j < js = t.
If s = 1, (3.12) is contradictory to the definition of j1. If s ≥ 2, since j is not a solution
to (3.11), we have

vj > β(T (v1)− T (vj)). (3.13)

Note that two relations (3.12) and (3.13) are contradictory to each other. Therefore,
we reach the conclusion that T ′ ∈ Rn,k+1[deg(1) = 0, µ = w].

Before we give the reverse procedure to reconstruct T from T ′. We need the fol-
lowing three claims about the above procedure.

Claim 1. The node vji must be on the path from v1 to β(Ri) in Ri.

14



The condition (3.10) says that every node in R′1 = T (v1) − T (vj1) is greater than
vj1 . The subtree R1 consists of R′1 joined by a subtree rooted at vj1 . Thus, vj1 must
be on the path from v1 to β(R1).

For R2, R3, . . . , Rs, the same argument applies. Since ji−1 + 1 ≤ ji, ji + 1 > ji. It
follows that vji ∈ T (vji−1+1) and vji 6∈ T (vji+1), that is vji ∈ Ri = T (vji−1+1)−T (vji+1).
By the definition of vji+1

, we have

vji < β(T (v1)− T (vji)) ≤ β(T (vji−1+1)− T (vji)) = β(Ri −Ri(vji)).

Thus, β(Ri) is in Ri(vji). Note that we have assumed that the above equalities is true
for vji−1+1 = vji .

Claim 2. w > β(R1) > β(R2) > · · · > β(Rs).

From the following relations

vji < β(T (v1)− T (vji)) ≤ β(T (vji−2+1)− T (vji−1+1)) = β(Ri−1),

we obtain β(Ri) ≤ vji < β(Ri−1). We have already shown that β(R1) ≤ vj1 < w, so
Claim 2 follows.

Claim 3. The node vji can be determined as the first node zj on the path z1, z2, . . . , zr =
β(Ri) from the root of Ri to β(Ri) such that

zj < β(Ri(z1)−Ri(zj)) and zj < β(Ri−1). (3.14)

Here, we set β(R0) = w and assume the first inequality of (3.14) is always true for
zj = z1.

It is easy to see that Claim 3 holds for i = 1. We now assume that i ≥ 2. In the
proofs of Claim 1 and Claim 2, we have also shown that

vji < β(Ri −Ri(vji)) and vji < β(Ri−1).

Suppose there is another vj 6= vji on the path from the root of Ri to vji that satisfies
the condition

vj < β(Ri −Ri(vj)) and vj < β(Ri−1).

By Claim 2 and the above condition, vj satisfies the condition

vj < β(T (v1)− T (vj)).

However, we must have ji−1 + 1 ≤ j < ji, because vji−1+1 is the root of Ri. This is a
contradiction to the fact that j2 < · · · < js are the only solutions greater than j1 to
the above inequality.
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We now come to the turning point of the bijection. For a tree T ′ ∈ Rn,k+1[deg(1)
= 0, µ = w], we are going to reconstruct the tree T . The first step is easy: the subtrees
R1, R2, . . . , Rs can be separated from T ′ as the subtrees Ri of w such that β(Ri) < w.
By Claim 1, R1, R2, . . . , Rs can be restored by the following order:

w > β(R1) > β(R2) > · · · > β(Rs).

Let R = T ′ −R1 −R2 − · · · −Rs. By the construction of T ′, we need to merge the
subtrees R1, R2, . . . , Rs into a rooted tree S. In so doing, we need to identify which
node on Ri is the last node on the path from v1 to the node 1 in T . In other words,
we need to have the nodes vj1 , vj2 , . . ., vjs restored. This job can be left to Claim 2.

The last step would be to put R1, R2, . . ., Rs together with R. For i = 1, 2, . . . , s−1,
we join Ri+1 as a subtree of vji of Ri, then join R as a subtree of 1 in Rs. At last, we
obtain the tree T ∈ Rn,k[deg(1) = 1, β∗ = w].

Here is an example for n = 20, w = 11.
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Figure 6: Example for n = 20 and w = 11

We are now ready to present the proof of Theorem 3.5 in the following refined
version.

Theorem 3.7 For m ≥ 1, we have the following bijections:
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(a) R(0)
n,k[deg(1) = m, 1 6≺ n, α < β∗]

←→ R(0)
n,k+m[deg(1) = 0, deg(n) ≥ m+ 1, 1 6≺ n].

(b) R(0)
n,k[deg(1) = m,α > β∗]

←→ R(0)
n,k+m[deg(1) = 0, deg(n) = m, 1 6≺ n].

(c) R(0)
n,k[deg(1) = m, 1 ≺ n, deg(n) ≥ 2, α < β∗].

←→ R(0)
n,k+m[deg(1) = 0, deg(n) ≥ m+ 1, 1 ≺ n, λ > 1].

(d) R(0)
n,k[deg(1) = m, 1 ≺ n, deg(n) = 1]

←→ R(0)
n,k+m[deg(1) = 0, deg(n) = m, 1 ≺ n, λ > 1].

Proof. Recall the facts that for any tree T ∈ R(0)
n,k we have deg(n) > 0 and that

α(T ) is well defined. Moreover, we do not get into the detailed discussion about the
range of m, because when m is out of range the bijection would simply do nothing.

(a) Suppose T ∈ R(0)
n,k[deg(1) = m, 1 6≺ n, α < β∗].

Since n is not on the path from 1 to the root and 1 is not on the path from n to
the root, 1 and n lie in different branches of their minimum common ancestor, in other
words, the common ancestor furthest from the root. Moving all subtrees of 1 to the
node n, we are led to a tree

T ′ ∈ R(0)
n,k+m[deg(1) = 0, deg(n) ≥ m+ 1, 1 6≺ n].

Conversely, given the tree T ′, we assume that b1, b2, . . . , bj(j ≥ m + 1) are the
children of n ordered by β(b1) > β(b2) > · · · > β(bj). We now move the first m
subtrees T ′bi(1 ≤ i ≤ m) to node 1. Thus, we have recovered the above tree T .

(b) Suppose T ∈ R(0)
n,k[deg(1) = m,α > β∗]. Exchange the node n and the subtree

Tα. Thus the degree of n becomes zero, the edges on the path from the root to α are
all improper by the definition of R(0)

n,k, while the first edge on the path from α to n
is proper by the definition of αT . Then move all subtrees of 1 to the node n. Since
α > β∗, we obtain a tree

T ′ ∈ R(0)
n,k+m[deg(1) = 0, deg(n) = m, 1 6≺ n].

The reverse of the above procedure is strictly the other way around. Starting with
the above tree T ′, move all the subtrees of n back to the node 1. Suppose that we
obtain a tree T ′′ and that the path from the root to n in T ′′ is P : (y1, y2, . . . , ys = n).
Let (yi, yi+1) be the first proper edge on the path P . Suppose R1, R2, . . . , Rs are all
of the subtrees of yi such that β(Rj) > yi, and n 6∈ Rj, ∀j = 1, 2, . . . , s. Move these
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subtrees to the node n, and exchange labels of the nodes yi and n. Therefore, we get
the above tree T such that yi = α(T ).

(c) Suppose T ∈ R(0)
n,k[deg(1) = m, 1 ≺ n, deg(n) ≥ 2, α < β∗]. Assume that

b1, b2, . . . , bj(j ≥ 2) are the children of n ordered by 1 = β(b1) < β(b2) < · · · < β(bj) <
β∗. Suppose Q : (b2 = c1, c2, . . . , ct = β(b2)) is the path from b2 to β(b2). We locate
the first ci such that

ci < β(T (b2)− T (ci)), ci < β∗, and ci < β(b3), if j ≥ 3.

Moving the subtree Tb1 to the node ci and moving all subtrees of 1 to the node n, we
obtain a tree

T ′ ∈ R(0)
n,k+m[deg(1) = 0, deg(n) ≥ m+ 1, 1 ≺ n, λ > 1],

with the property that ci = λ(T ′).

Conversely, for this tree T ′, we have x = λ(T ′) > 1. We assume that d1, d2, . . . , ds(s ≥
m + 1) are the children of n ordered by β(d1) > β(d2) > · · · > β(ds) = 1. Moving
T ′di(1 ≤ i ≤ m) to the node 1, and moving the subtree of x that contains 1 to the node
n, we get the above tree T .

(d) Suppose T ∈ R(0)
n,k[deg(1) = m, 1 ≺ n, deg(n) = 1], and let b be the unique

child of n. Assume that a1, a2, . . . , am are the children of 1 ordered by β(a1) < β(a2) <
· · · < β(am). Moving Tai (2 ≤ i ≤ m) to the node n, and let R be the resulting tree.
Substituting S = Rb with S ′ by applying Lemma 3.6, we obtain a tree

T ′ ∈ R(0)
n,k+m[deg(1) = 0, deg(n) = m, 1 ≺ n, λ > 1].

Conversely, for this tree T ′, we assume that the subtree of n that contains the node
1 is S ′. Applying Lemma 3.6 to S ′, we may recover S. Moving the other m−1 subtrees
of n to the node 1, we obtain the above tree T .

After such an exciting and exhausting journey, we finally come to our destination—
Theorem 3.1. The essence of the Theorem 3.1 is the duality between the minimum
element and the maximum element in a rooted tree. It is easy to imagine that the
labels of a rooted tree do not have to be a consecutive segment of integers in order for
the bijection to hold. For this reason, we say that a rooted tree T is relabeled by a set
V of the same number of nodes if the minimum node of T is relabeled by the minimum
node in V , the second minimum node is relabeled by the second minimum node in V ,
and so forth. By applying Theorem 3.1, we can construct the main bijection of this
paper, leading to a combinatorial proof of Theorem 2.3.

Theorem 3.8 For 1 ≤ r ≤ n and 0 ≤ k < n− r, we have the following bijection:

Tn+1,k[deg(2) > 0, deg(1) = r]←→ Tn+1,k+1[deg(n+ 1) > 0, deg(1) = r]. (3.15)
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Proof. It is obvious that for r = n both sides of (3.8) are empty. So we may assume
that 1 ≤ r ≤ n − 1. First, it is easy to see that the case r = 1 reduces to Theorem
3.1, by relabeling the set {2, 3, . . . , n + 1} with {1, 2, . . . , n}. Thus, we may assume
that r ≥ 2. Suppose T ∈ Tn+1,k[deg(2) > 0, deg(1) = r]. Assume x is the child of the
root 1 such that 2 is a descendant of x in T , and y is the child of the root 1 such that
n + 1 is a descendant of y in T . Note that it is possible that x = y. We now proceed
to construct a tree T ′ ∈ Tn+1,k+1[deg(n + 1) > 0, deg(1) = r]. We have three cases to
consider:

Case 1. x = y. In this case, the minimum element 2 and the maximum element n+1
both appear in the subtree Tx. Applying the Theorem 3.1 on Tx, we are led to a rooted
tree T ′x. Substituting Tx by T ′x in T , we obtain a rooted tree T ′ ∈ Tn+1,k+1[deg(n+1) >
0, deg(1) = r].

Case 2. x 6= y, and degT (n + 1) > 0. We also apply Theorem 3.1 on Tx, and we
may obtain a rooted tree T ′ ∈ Tn+1,k+1[deg(n+ 1) > 0, deg(1) = r] as in Case 1.

Case 3. x 6= y, and degT (n+1) = 0. Let us relabel the subtrees Tx and Ty. Suppose
Tx has nodes 2 and u1 < u2 < · · · < ui and Ty has nodes n+ 1 and v1 < v2 < · · · < vj.
Let R be the rooted tree obtained from Tx by relabeled by u1 < u2 < · · · < ui and
n+ 1, and S be the rooted tree obtained from Ty relabled by 2 and v1 < v2 < · · · < vj.
Applying Theorem 3.1 on R, we obtain a rooted tree R′ with degR′(n + 1) > 0. Now
substituting Tx by R′ and Ty by S, we are led to a rooted tree T ′, which is clearly in
Tn+1,k+1[deg(n+ 1) > 0, deg(1) = r].

Since all the above steps are reversible. We now only need to classify the cases for
a tree T ′ ∈ Tn+1,k+1[deg(n + 1) > 0, deg(1) = r] so that they can fit into one of the
above three cases.

Case A. If 2 and n+1 are in the same subtree T ′x where x is a child of the root 1, then
we resort to the reverse of Case 1 to recover the tree T ∈ Tn+1,k[deg(2) > 0, deg(1) = r].

Case B. Suppose u and v are the children of 1 in T ′ such that T ′u contains n+1 and
T ′v contains 2. If the degree of the maximum element in T ′v is nonzero, then we may
resort the reverse of the construction in Case 2 to recover T . Otherwise, the degree
of the maximum element in T ′v equals zero. In this case, we may count on the reverse
procedure of Case 3 to recover the desired T . This completes the proof.

4 Open Problems

In evaluation of the bijections presented in this paper, the construction of (3.4) seems
to be much more technical than it should be, especially when compared with the case
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(3.3). We would very much like to propose the following problem.

Problem 4.1 Find an intrinsic construction for the bijection (3.1). In particular,
Lemma 3.6 deserves a better explanation.

The inductive proofs of Theorem 2.3 and Theorem 3.1 might serve a hint if they
can be informatively translated into a bijective scheme.

The next problem is concerned with a refined version of the recurrence relation for
the numbers fn,k = |Rn,k|. Recall that λ(T ) denotes the lower critical node of T , as
defined in the previous section. Notice that λ(T ) is defined only for a tree T such that
degT (n) > 0, where n is the maximum node. For notational simplicity, we leave out
the condition degT (n) > 0 when the condition λ = i is present. We have the following
conjecture:

Conjecture 4.2 For n ≥ 3 and 1 ≤ i ≤ n− 2, we have the recurrence relation:

|Rn,k[λ = i]| = (n− 2) |Rn−1,k[λ = i]|+ (n+ k − 3) |Rn−1,k−1[λ = i]|. (4.1)

Some numerical evidence in support of the above conjecture is presented below for
speculation.

Table of Rn,k[λ = 1]. Table of Rn,k[λ = 2]. Table of Rn,k[λ = 3].

k\n 2 3 4 5
1 1 1 2 6
2 2 7 29
3 8 59
4 48

k\n 2 3 4 5
1 1 2 6
2 1 5 23
3 4 37
4 24

k\n 2 3 4 5
1 2 6
2 4 20
3 3 29
4 18

Here are some very special cases:

|Rn,1[λ = i]| = |Rn−1,0| = (n− 2)!, 1 ≤ i ≤ n− 1, (4.2)

|Rn,k[λ = n− 1]| = |Rn−1,k−1|, 1 ≤ k ≤ n− 1. (4.3)

If the above conjecture is true, then we can use induction to derive the recurrence
relation (1.8) from (4.1), (4.3), and the obvious identity

|Rn,k[deg(n) = 0]| = (n− 1)|Rn−1,k|.
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The following special case is worth mentioning:

|Rn,n−1| = (2n− 3)!! = 1 · 3 · · · · · (2n− 3). (4.4)

We may make a connection to increasing plane trees. A rooted tree on [n] is called
increasing if any path from the root to another vertex forms an increasing sequence.
As an equivalent statement, we may say that an increasing tree is a rooted tree without
improper edges. We have the following observation

Proposition 4.3 There is a bijection between the set of rooted trees on [n] with n− 1
improper edges and the set of plane trees on [n] without improper edges.

Note that (2n − 3)!! is also the number of increasing plane trees on [n]. Here is a
combinatorial interpretation. Let T be a tree in Rn,n−1. Then 1 has to be a leaf of
T , and all edges of T are improper. Suppose that (1, v1, v2, . . . , vt) is the path from
1 to the root. Then we may recursively construct an increasing plane tree T ′. If T
has only one node, then T ′ is the same as T . If n > 1, then for each T (vi) construct
the corresponding increasing plane tree, and put them together by joining them to the
minimum node in the order of (v1, v2, . . . , vt). An example is given in Figure 7. The
tree on the left is a rooted tree in which every edge is improper, and the tree on the
right is an increasing plane tree.
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Figure 7: Example for Proposition 4.3

We now state a problem based on the above simple observation, yet to be better
understood.

Problem 4.4 Since Qn,0(x) corresponds to increasing trees on [n] while Qn,n−1(x) cor-
responds to increasing plane trees on [n], there must be some kind of combinatorial
structure like partial increasing plane trees, a notion of interpolation of increasing trees
and increasing plane trees. Such a structure should serve the purpose as an alternative
combinatorial interpretation of the Ramanujan polynomials.
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It is quite intriguing that there lie rich combinatorial structures behind the Ra-
manujan polynomials. No doubt that we may expect more episodes of uncovering
further mysteries plotted by these polynomials. Hopefully, we have made some room
for imagination, and we may (in any case) keep our fingers crossed with respect to
further developments.
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