Citations of

William Y.C. Chen and Z.G. Liu, Parameter augmentation for basic hypergeometric series I, Mathematical Essays in Honor of Gian-Carlo Rota, Eds., B.E. Sagan and R.P. Stanley, Birkhäuser, Boston, (1998), 111–129.


  1. M.A. Abdlhusein, The Euler operator for basic hypergeometric series, Int. J. Adv. Appl. Math. Mech. 2(2014) 42-52.

  2. M.A. Abdlhusein, The Generalized Hahn Polynomials, TWMS J. Appl. Eng. Math. 5(2015) 231-248.

  3. M.A. Abdlhusein, Two operator representations for the trivariate q-polynomials and Hahn polynomials, Ramanujan J. 40(2016) 491-509.

  4. S.A. Ali and A. Agnihotri, Certain Basic Hypergeometric Series Identities Through g-Exponential Operator Technique, International Bulletin of Mathematical Research, 1(2014) 49-53

  5. J. Cao, New proofs of generating functions for Rogers–Szegö polynomials, Appl. Math. Comput. 207(2009) 486-492.

  6. J. Cao, Bivariate generating functions for Rogers–Szegö polynomials, Appl. Math. Comput. 217(2010) 2209-2216.

  7. J. Cao, Notes On Carlitz's q-Operators, Taiwanese J. Math. 14(2010) 2229-2244.

  8. J. Cao, Alternative proofs of generating functions for Hahn polynomials and some applications, Infin. Dimens. Anal. Quantum Probab. Relat. Top. 14(2011) 571-590.

  9. J. Cao, Moments for generating functions of Al-Salam-Carlitz polynomials, Abstr. Appl. Anal. 2012(2012) 548168:1-548168:18

  10. J. Cao, q-Difference equations for generalized homogeneous q-operators and certain generating functions, J. Difference Equ. Appl. 20(2014) 837-851.

  11. J. Cao, A note on generalized q-difference equations for q-beta and Andrews–Askey integral, J. Math. Anal. Appl. 412(2014) 841-851.

  12. V.Y.B. Chen, W.Y.C. Chen and N.S.S. Gu, On the Bilateral Series , arXiv:0701062v1.

  13. W.Y.C. Chen and A.M. Fu, Cauchy augmentation for basic hypergeometric series, Bull. Lond. Math. Soc. 36(2004) 169-175.

  14. W.Y.C. Chen and A.M. Fu, Semi-finite forms of bilateral basic hypergeometric series, Proc. Amer. Math. Soc. 134(2006) 1719-1725.

  15. V.Y.B. Chen and N.S.S. Gu, The Cauchy operator for basic hypergeometric series, Adv. in Appl. Math. 41(2008) 177-196.

  16. W.Y.C. Chen, Q.H. Hou and Y.P. Mu, Non-terminating basic hypergeometric series and the q-Zeilberger algorithm, Proc. Edinb. Math. Soc. (2) 51(2008) 609-633.

  17. W.Y.C. Chen and Z.G. Liu, Parameter augmentation for basic hypergeometric series, II, J. Combin. Theory Ser. A, 80(1997) 175-195.

  18. A. Di Bucchianico and D. Loeb , A selected survey of umbral calculus, Electron. J. Combin. (2000), #DS3.

  19. T. Ernst, The history of q-calculus and a new method, Department of Mathematics, Uppsala University, 2000.

  20. T. Ernst, Some results for q-functions of many variables, Rend. Sem. Mat. Univ. Padova 112(2004) 199-235.

  21. T. Ernst, q-Calculus as operational algebra, Proc. Est. Acad. Sci. 58(2009) 73-97.

  22. J.P. Fang, q-Differential operator identities and applications, J. Math. Anal. Appl. 332(2007) 1393-1407.

  23. J.P. Fang, A Note on The Rogers-Fine Identity, Electron. J. Combin. 14(2007) #N17.

  24. J.P. Fang, Extensions of q-Chu-Vandermonde's identity, J. Math. Anal. Appl. 339(2008) 845-852.

  25. J.P. Fang, Remarks on a generalized q-difference equation, J. Difference Equ. Appl. 21(2015) 934-953.

  26. 谷珊珊, 关于双边级数 , 2012.

  27. V.J.W. Guo, Elementary proofs of some q-identities of Jackson and Andrews–Jain, Discrete Math. 295(2005) 63-74.

  28. Z. Jia, Two new q-exponential operator identities and their applications, J. Math. Anal. Appl. 419(2014) 329-338.

  29. Z. Jia, A new extension of the nonterminating summation via q-difference equation, Taiwanese J. Math.to appear 2016.

  30. C. Krattenthaler and K.S. Rao, Automatic generation of hypergeometric identities by the beta integral method, J. Comput. Appl. Math. 160(2003) 159-173.

  31. A. Kumar, M.S. Khan and K.P. Yadav, Parameter Augmentation for Some Basic Hypergeometric Series Identities, Journal of Mathematical and Computational Science 2(2012) 1532-1538.

  32. N.N. Li and W. Tan, Two generalized q-exponential operators and their applications, Adv. Difference Equ. 2016(2016) #53.

  33. Z.G. Liu, Some operator identities and q-series transformation formulas, Discrete Math. 265(2003) 119-139.

  34. Z.G. Liu, Two q-difference equations and q-operator identities, J. Difference Equ. Appl. 16(2010) 1293-1307.

  35. Z.G. Liu, An extension of the non-terminating summation and the Askey–Wilson polynomials, J. Difference Equ. Appl. 17(2011) 1401-1411.

  36. Z.G. Liu, On the q-partial differential equations and q-series, Ramanujan Math. Soc. Lect. Notes Ser. 20(2013) 213-250.

  37. Z.G. Liu and J. Zeng, Two expansion formulas involving the Rogers–Szegő polynomials with applications, Int. J. Number Theory 11(2015) 507-525.

  38. D. Lu, q-difference equation and the Cauchy operator identities, J. Math. Anal. Appl. 359(2009) 265-274.

  39. Y.P. Mu, Parameter augmentation and the q-Gosper algorithm, J. Symbolic Comput. 43(2008) 874-882.

  40. K.N. Murthy, A study of the theory of basic hypergeometric series and allied topics, University of Mysore, Manasagangotri, 2015.

  41. H.L. Saad and M.A. Abdlhusein, The q-exponential operator and generalized Rogers-Szegö polynomials, J. Adv. Math. 8(2014) 1440-1455.

  42. H.L. Saad and A.A. Sukhi, The q-Exponential Operator, Appl. Math. Sci. 7(2005) 6369-6380.

  43. D. D. Somashekara, K. N. Murthy, and S. L. Shalini, On a New Summation Formula for Basic Bilateral Hypergeometric Series and Its Applications, Int. J. Math. Math. Sci. 2011(2011) 132081:1-132081:7.

  44. G. Singer, D. Danilov and U. Norbisrath, Complex search: aggregation, discovery, and synthesis, P. Est. Acad. Sci. 61(2012) 89-106.

  45. H.M. Srivastava and M.A. Abdlhusein, New forms of the Cauchy operator and some of their applications, Russ. J. Math. Phys. 23(2016) 124-134.

  46. M. Wang, Generalizations of Milne's U(n+1) q-binomial theorems, Comput. Math. Appl. 58(2009) 80-87.

  47. 王云鹏, 杨继真, 两个由 Heine 变换求和公式得到的 q 级数恒等式, 洛阳师范学院学报, 30(2011) 5-7.
  48. Z. Zhang, A note on an identity of Andrews, Electron. J. Combin. 12(2005) #N3.

  49. Z. Zhang, Operator identities and several U(n+1) generalizations of the Kalnins–Miller transformations, J. Math. Anal. Appl. 324(2006) 1152-1167.

  50. Z. Zhang and M. Liu, Applications of operator identities to the multiple q-binomial theorem and q-Gauss summation theorem, Discrete Math. 306(2006) 1424-1437.

  51. Z. Zhang and J. Wang, Two operator identities and their applications to terminating basic hypergeometric series and q-integrals, J. Math. Anal. Appl. 312(2005) 653-665.

  52. Z. Zhang and J. Yang, Several q-series identities from the Euler expansions of and , Arch. Math. (Brno), 45(2009) 47-58.

  53. 张之正, 杨继真, 双参数有限 q 指数算子及其应用, 数学学报, 53(2010) 1007-1018.

  54. Z. Zhang and T. Wang, Operator identities involving the bivariate Rogers–Szegö polynomials and their applications to the multiple q-series identities, J. Math. Anal. Appl. 343(2008) 884-903.

  55. Y. Zhou and Q.M. Luo, Some New Generating Functions for q-Hahn Polynomials, J. Applied Mathematics, 2014(2014) 419365:1-419365:5.

  56. J.M. Zhu, The solutions of four q-functional equations, arXiv:1001.0299

back to homepage