Citations of

William Y.C. Chen and Joseph Oliveira, Implication algebras and the Metropolis-Rota axioms for cubic lattices, J. Algebra, 171 (1995) 383ĘC396.

  1. M. Abad and J.P.D. Varela, Representation of Cubic Lattices by Symmetric Implication Algebras, Order, 23(2006) 173-178.

  2. C. Bailey and J. Oliveira, An Axiomization for Cubic Algebras, Mathematical Essays in Honor of Gian-Carlo Rota. Birkhäuser Boston, 1998: 305-334.

  3. C.G. Bailey and J.S. Oliveira, Cube-like structures generated by filters, algebra universalis, 49(2003) 129-158.

  4. C. Bailey and J.S. Oliveira, The Algebra of Filters of a Cubic Algebra, arXiv:0901.4933.

  5. C. Bailey and J.S. Oliveira, Enumerating the Derangements of an n-Cube via Mobius Inversion, arXiv:0902.0937.

  6. R.A. Borzooei and S.K. Shoar, Implication algebras are equivalent to the dual implicative BCK-algebras, Scientiae Mathematicae Japonicae Online, e-2006, 371–373.

  7. F. Cicalese, Reliable computation with unreliable information, University of Salerno, 2001.

  8. F. Cicalese, D. Mundici and U. Vaccaro, Rota-Metropolis cubic logic and Ulam-Rényi games, Algebraic Combinatorics and Computer Science. Springer Milan, 2001: 197-244.

  9. F. Cicalese, Fault-Tolerant Search Algorithms, Monographs in Theoretical Computer Science–An EATCS Series. Springer-Verlag, 2013, 15.

  10. A.W.M. Dress, Recent results and new problems in phylogenetic combinatorics, La ciencia y tecnología ante el tercer milenio, Sociedad Estatal España Nuevo Milenio, 2002: 143-162.

  11. J. Meng, Implication algebras are dual to implicative BCK-algebras, Soochow Journal of Mathematics, 22(1996),567-571.

  12. A. Rezaei, A.B. Saeid and R.A. Borzooei, Relation between Hilbert algebras and BE-algebras, Appl. Appl. Math. 8(2013) 573-584.

  13. A. Walendziak, On commutative BE-algebras, Sci. Math. Jpn. online, e-2008, 585-588.

back to homepage