W.Y.C. Chen, V. Faber and E. Knill,
Restricted routing and wide diameter of the cycle prefix,
In: D.F. Hsu, A.L. Rosenberg and D. Sotteau (eds.),
Interconnection networks and mapping and scheduling parallel computations, 31-46,
DIMACS Ser. Discrete Math. Theoret. Comput. Sci. 21, Amer. Math. Soc., Providence, RI, 1995.

Cited by

  1. W.Y.C. Chen, V. Faber and B.Q. Li, Automorphisms of the cycle prefix digraph, arXiv:1404.4907.

  2. F. Comellas and M. Mitjana, Broadcasting in cycle prefix digraphs, Discrete Appl. Math. 83 (1998) 31-39.

  3. F. Comellas and M. Mitjana, Cycles in the cycle prefix digraph, Ars Combin. 60 (2001) 171-180.

  4. R. Dougherty and V. Faber, Network routing on regular directed graphs from spanning factorizations, arXiv:1407.0908.

  5. V. Faber, J.W. Moore and W.Y.C. Chen, Cycle prefix digraphs for symmetric interconnection networks, Networks 23 (1993) 641-649.

  6. D.F. Hsu, On Container Width and Length in Graphs, Groups, and Networks--Dedicated to Professor Paul Erdös on the occasion of his 80th birthday-, IEICE transactions on fundamentals of electronics, communications and computer sciences 77 (1994) 668-680.

  7. E. Knill, Notes on the connectivity of Cayley coset digraphs, arXiv:math/9411221.

  8. S.C. Liaw, G.J. Chang, F. Cao and D.F. Hsu, Fault-tolerant routing in circulant networks and cycle prefix networks, Ann. Comb. 2 (1998) 165-172.

  9. I. Rajasingh, B. Rajan and R.S. Rajan, Combinatorial properties of circulant networks, IAENG Int. J. Appl. Math. 41 (2011) 352-356.

  10. I. Rajasingh, B. Rajan, and R. S. Rajan, Reliability Measures in Circulant Network, Proceedings of the World Congress on Engineering 2011 Vol I, London, 2011.

  11. I. Rajasingh, B. Rajan, and R.S. Rajan, Wide diameter of generalized fat tree, In: Informatics Engineering and Information Science, 424-430, Springer Berlin Heidelberg, 2011.

  12. R.S. Rajan, R. Jayagopal, I. Rajasingh, T.M. Rajalaxmi and N. Parthiban, Combinatorial properties of root-fault hypertrees, Procedia Computer Science 57 (2015) 1096-1103.

  13. M. Zdímalová  and L. Staneková, Which Faber–Moore–Chen digraphs are Cayley digraphs? Discrete Math.310 (2010) 2238-2240.