Citations of

William Y.C. Chen, A short proof of Kundu's k-factor theorem, Discrete Math, 71 (1988) 177ĘC179.

  1. M. Aksen, I. Miklos and K. Zhou, Half-regular factorizations of the complete bipartite graph, arXiv:1602.04316.

  2. F.R.G. Abarzúa, Realizaciones disjuntas de secuencias de grado en grafos con algunas aplicaciones a Tomografía Discreta, Ph.D Thesis, Universidad de Chile, 2009.

  3. A.H. Busch, M.J. Ferrara, S.G. Hartke, M.S. Jacobson, H. Kaul and D.B. West, Packing of Graphic n-tuples, J. Graph Theory 70(2012) 29-39.

  4. S. Behrens, C. Erbes, M. Ferrara, S.G. Hartke et al. New results on degree sequences of uniform hypergraphs, Electron. J. Combin. 20(2013),#P14.

  5. D. Bauer, H.J. Broersma, J.V.D. Heuvel, N. Kahl and E. Schmeichel, Degree Sequences and the Existence of k-Factors, Graphs Combin. 28(2012),149-166.

  6. W.Y.C. Chen and A. Shastri, On joint realization of (0, 1) matrices, Linear Algebra Appl. 112(1989) 75-85.

  7. Y.Y. Chien, On the Platonicity of polygonal complexes, Ph.D Thesis, University of Southampton, 2015.

  8. B. Cloteaux, A Sufficient Condition for Graphic Lists with Given Largest and Smallest Entries, Length, and Sum, arXiv:1607.03836.

  9. J. Cummings and C.A. Kelley, On the independence and domination numbers of replacement product graphs, Involve, a Journal of Mathematics, 9(2016) 181-194.

  10. M. Ferrara, Some problems on graphic sequences, Graph Theory Notes of New York, 64(2013) 19-25.

  11. F. Guinez, M. Matamala and S. Thomasse, Realizing disjoint degree sequences of span at most two: A tractable discrete tomography problem, Discrete Appl. Math. 159(2011) 23-30.

  12. T. S. Michael, The Structure matrix of the class of r-multigraphs with a prescribed degree sequence, Linear Algebra Appl., 183(1993) 155-177.

  13. S.G. Hartke and T. Seacrest, Potential bisections of large degree, 2010.

  14. S.G. Hartke and T. Seacrest, Graphic sequences have realizations containing bisections of large degree, J. Graph Theory, 71(2012)386-401.

  15. B.M. Reiniger, Coloring and constructing (hyper) graphs with restrictions, Ph.D Thesis, University of Illinois at Urbana-Champaign, 2015.

  16. T. Seacrest, Packings and Realizations of Degree Sequences with Specified Substructures, Ph.D Thesis, 2011.

  17. T. Seacrest, Multi-Switch: a Tool for Finding Potential Edge-Disjoint 1-factors, arXiv:1508.00079.
    J.H. Yin, A note on packing of graphic n-tuples, Discrete Math. 339(2016)132-137.

back to homepage