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Abstract

We come across an unexpected connection between a remarkable grammar of Du-
mont for the joint distribution of (exc,fix) over Sn and a beautiful theorem of Diaconis-
Evans-Graham on successions and fixed points of permutations. With the grammar in
hand, we demonstrate the advantage of the grammatical calculus in deriving the gener-
ating functions, where the constant property plays a substantial role. In consideration
of left successions of a permutation, we present a grammatical approach to the joint
distribution investigated by Roselle. Moreover, we obtain a left succession analogue,
or a shifted version, of the Diaconis-Evans-Graham theorem, exemplifying the idea of
a grammar assisted bijection. The grammatical labelings give rise to an equidistribu-
tion of (jump, des) and (exc,drop) restricted to the set of left successions and the set
of fixed points, where jump is the statistic defined to be the number ascents minus the
number of left successions.

Keywords: Context-free grammars, increasing binary trees, the Diaconis-Evans-Graham
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1 Introduction

This paper is concerned with a beautiful theorem of Diaconis-Evans-Graham [5] on the cor-
respondence between successions and fixed points of permutations. Unlike a typical equidis-
tribution property, this theorem possesses an attractive feature that the bijection can be re-
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stricted to a specific set of successions and the same set of fixed points, and so it says more
than just an equidistribution.

The topic of the enumeration of successions of permutations has a rich history. Dumont
referred to the work of Roselle [9] on the joint distribution of the number of ascents and the
number of successions. In fact, the grammar proposed by Dumont [6] is meant to deal with
the joint distribution of the number of excedances, the number of drops and the number of
fixed points of a permutation. His argument can be rephrased in the language of a grammat-
ical labeling of complete increasing binary trees. We will show that this grammar is related
to the Diaconis-Evans-Graham theorem, even though it does not look so at first sight. It is
worth mentioning that Dumont’s citation to Roselle was not accurate, nevertheless such an
incident was somehow just to the point. Indeed, this work would not have come into being
without the lucky pointer of Dumont.

First, we come to the realization that the grammar of Dumont can be adapted to a problem
of Roselle. We need to pay attention to the notion of a left succession, analogous to that of
a left peak of a permutation. As remarked by Roselle, the consideration of a left succession
at position 1 was regarded convenient for the computation of the generating function for
interior successions. The definition of a left succession assumes that a zero is patched at
the beginning of a permutation and that it should be taken into account for the counting. In
contrast to a left succession, a usual succession is called an interior succession.

Once the grammar is proposed, a formal justification is needed to endow it with a combi-
natorial significance. This is usually done by a grammatical labelings. Then there is no fear
in performing the grammatical calculus for the purpose of deriving the generating functions.
We will how the grammar of Dumont works for the joint distribution of (exc, fix). Further,
we give a different labeling scheme for permutations which shows that the same grammar
of Dumont suits equally well for the joint distribution of (jump, lsuc), where jump and lsuc

denote the number of jumps and the number of left successions of a permutation, respec-
tively, whose definitions will be given later. It is no surprise that the constant property plays
a substantial role in the computation.

While the grammar is instrumental in establishing an equidistribution, it is not clear
whether one can take a step forward in obtaining a Diaconis-Evans-Graham type theorem
in regard with a given set left successions and the same set of fixed points. Fortunately, the
answer is yes. In fact, it is exactly where the idea of a grammar assisted bijection comes on
the scene.

Let us see what will evolve then.
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2 A grammar of Dumont

In this section, we recall a remarkable grammar of Dumont [6] for the joint distribution of
the statistics (exc, drop, fix) over Sn, the set of permutations of [n] = {1, 2, . . . , n}, where
n ≥ 1. For a permutation σ ∈ Sn, an index 1 ≤ i ≤ n is called an excedance if σi > i, or
a drop if σi < i, or a fixed point if σi = i. The number of excedances, the number of drops
and the number of fixed points of σ are denoted by exc(σ), drop(σ) and fix(σ), respectively.
A drop of a permutation is also called an anti-excedance.

The joint distribution of (exc, fix) was determined by Foata-Schützenberger [7], see also
Shin-Zeng [10]. For n ≥ 1, define

Fn(x, z) =
∑
σ∈Sn

xexc(σ)zfix(σ).

Then
∞∑
n=0

Fn(x, z)
tn

n!
=

(1− x)ezt

ext − xet
. (2.1)

Putting
Fn(x, y, z) =

∑
σ∈Sn

xexc(σ)ydrop(σ)zfix(σ),

the formula (2.1) can be converted into the homogeneous form

∞∑
n=0

Fn(x, y, z)
tn

n!
=

(y − x)ezt

yext − xeyt
. (2.2)

The grammar of Dumont reads

G = {a→ az, z → xy, x→ xy, y → xy}. (2.3)

Let D be the formal derivative with respect to G.

Theorem 2.1 (Dumont). The following relation is valid for n ≥ 0,

Dn(a) = aFn(x, y, z). (2.4)

Dumont’s argument can be understood as a description of the procedure of recursively
generating permutations in the cycle notation. Recall that each cycle is written with the
smallest element at the beginning and the cycles are arranged in the increasing order of
the smallest elements, see Stanley [11]. Here we give an explanation in the language of a
grammatical labeling, which we call the (a, x, y, z)-labeling, both for permutations and for
increasing binary trees.

Given a permutation σ of [n], represent it in the cycle notation. Use a to signify a position
where a new cycle may be formed. If i is in a 1-cycle, we label it by z. If (i, j) is an arc in the
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cycle notation, that is, σ(i) = j, we label it by x if i < j = σ(i), that is, i is an excedance, or
by y if i > j, that is, i is a drop. Then an insertion of n+ 1 into σ can be formally described
with the aid of the grammar rules.

With the above grammar at disposal, one can build a complete increasing binary tree to
record the insertion process of generating a permutation of [n+ 1] from a permutation of [n],
in the cycle notation, of course. With the help of the correspondence between permutations
and complete increasing binary trees, see, Stanley [11], here is a labeling scheme: The
rightmost leaf is labeled by a, each fixed point has a left leaf z, an x-leaf corresponds to
an excedance and a y-leaf corresponds to a drop.

Below is a permutation in the cycle notation with labels, corresponding to the tree in
Figure 1,

(y 1x 8 y 4x 9 y 6) (z 2) (y 3x 5) (z 7) a.

1

4

8 6

9

2

z 3

5 7

a

x y y

x y x y z a

Figure 1: The (a, x, y, z)-labeling for (exc, drop, fix).

To recover a permutation σ from a complete increasing binary tree T , we may decompose
T into a forest of planted increasing binary trees by removing the edges from the root to the
a-leaf and deleting the a-leaf. Each component is either a single root or a tree for which the
root has only one child. Such a tree is called a planted increasing binary tree. For example,
the tree in Figure 1 has the decomposition as given in Figure 2.

Clearly, a planted increasing binary tree can be regarded as a representation of a cycle
since a cycle can be expressed in the form of the minimum element followed by a permu-
tation. But the permutation after the minimum element in turn corresponds to an increasing
binary tree. In this way, the permutation

(1 8 4 9 6) (2) (3 5) (7)

can be recovered from the tree in Figure 1.
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1

4

8

x y

6

9

x y

y

2

z

3

5

x y

7

z

Figure 2: A forest of planted increasing binary trees.

A grammatical derivation of the generating function of the Eulerian polynomialsAn(x, y)

was given in [4]. The same reasoning can be carried over to the computation of the generating
function of Fn(x, y, z). Bear in mind that the generating function with respect to the formal
derivative D is defined by

Gen(w, t) =
∞∑
n=0

Dn(w)
tn

n!
,

with w is a Laurent polynomial in the variables a, x, y, z. Note that the generating functions
with respect toD permits the multiplication property, which is equivalent to the Leibniz rule,
see [4] and references therein.

Theorem 2.2. We have

Gen(a, t) =
a(y − x)ezt

yext − xeyt
. (2.5)

Proof. In virtue of the rules
x→ xy, y → xy,

we have the generating function

Gen(x, t) =
x− y

1− yx−1e(x−y)t
,

see [4]. Since D(z − y) = xy − xy = 0, i.e., z − y is a constant relative to D, we find that

Dn(ax−1) = Dn−1
(
ax−1(z − y)

)
= ax−1(z − y)n,

and hence

Gen(ax−1, t) =
∞∑
n=0

Dn(ax−1)
tn

n!
= ax−1e(z−y)t. (2.6)

By the Leibniz rule or the product rule, we infer that

Gen(a, t) = Gen(x · ax−1, t) = Gen(x, t) Gen(ax−1, t) =
a(y − x)ezt

yext − xeyt
,

as required.

Setting a = 1, we arrive at the relation (2.2). Setting z = 0 yields the generating function
of the derangement polynomials, see Brenti [1].
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3 The joint distribution of Roselle

In this section, we give an account of the generating function of Roselle [9] for the joint
distribution of the number of ascents and the number of successions in a nutshell. Starting
with recurrence relations, Roselle employed the symbolic method to accomplish the task of
computation. Such an antiquate mechanism is rarely in demand these days, but perhaps it
should not be completely forgotten, even though it might seem obscure or dubious and even
if its extinction is inevitable.

3.1 The formulas of Roselle

Let us recall some definitions. Let n ≥ 1, and let σ be a permutation of [n]. We assume
that σ0 = 0. An ascent or a rise of σ is an index 0 ≤ i ≤ n − 1 such that σi < σi+1.
The number of ascents of σ is denoted by asc(σ). An index i (1 ≤ i ≤ n − 1) is called a
descent of σ if σi > σi+1. In this definition, the index n is not counted as a descent. The
number of descents of σ is denoted by des(σ). An index i (1 ≤ i ≤ n − 1) of σ is called a
succession, or an interior succession, if σi + 1 = σi+1. We call an index i (1 ≤ i ≤ n) a left
succession if σi−1 + 1 = σi. Mind the subtlety here concerning the choice of the index for a
left succession.

In order to single out ascents that are not left successions, we say that an index 1 ≤ i ≤ n

of σ is a jump if i − 1 is an ascent but i is not a left succession, that is, σi ≥ σi−1 + 2. The
number of jumps of σ is denoted by jump(σ).

For 2 ≤ i ≤ n, if i is jump, then i − 1 is called a big ascent by Ma-Qi-Yeh-Yeh [8], and
the number of big ascents of σ is denoted by basc(σ). It should be noted that the position 1

is not considered a big ascent in any event.

Let P (n, r, s) denote the number of permutations of [n] with r ascents and s (interior)
successions. For example, P (3, 2, 0) = 2. The two permutations of {1, 2, 3} with two
ascents and no successions are 132, 213. Nevertheless, 132 has a left succession. While the
term left succession is not manifestly put to use, one can find a clue through the generating
function for the number of permutations of [n] with r ascents and with no left successions,
see Roselle [9]. As a matter of fact, he introduced the polynomial

P ∗n(x) =
n−1∑
r=1

P ∗(n, r)xr,

where P ∗(n, r) is number of permutations on [n] with the first element greater than 1, and
with r rises, no successions. Notice that P ∗(n, r) is the number of permutations on [n] with
r rises and no left successions. By means of P ∗n(x), he defined the polynomial

P ∗n(z, x) =
n∑
j=0

(
n

j

)
P ∗j (x)zn−j,

6



and derived the generating function for the joint distribution of number of jumps and number
of left successions.

Theorem 3.1 (Roselle). We have
∞∑
n=0

P ∗n(z, x)
tn

n!
=

(1− x)ezt

ext − xet
. (3.1)

Notice that this formula coincides with (2.1) for the joint distribution of (exc, fix). But
this is by no means a coincidence. As it happens, we will have the same grammar and so we
ought to have the same story.

Define

Pn(z, x) =
n∑
r=1

r−1∑
s=0

P (n, r, s)xrzs.

Roselle showed that

Pn(z, x) = P ∗n(xz, x) + x(1− z)P ∗n−1(xz, x). (3.2)

Combining the formula (3.1) and the relation (3.2) yields the generating function of
Pn(z, x) in the following form, see [8].

Corollary 3.2.
∞∑
n=0

Pn+1(z, x)
tn

n!
=
x(1− x)2e(xz+1)t

(ext − xet)2
. (3.3)

Proof. In light of (3.1), we find that
∞∑
n=9

P ∗n(xz, x)
tn

n!
=

(1− x)exzt

ext − xet
,

∞∑
n=0

P ∗n+1(xz, x)
tn

n!
=

(
(1− x)exzt

ext − xet

)′
.

Owing to (3.2), an easy computation reveals (3.3).

3.2 A grammatical labeling for left successions

As alluded by the grammar of Dumont, we tend to believe that the notion of a left succession
should be considered as a legitimate object of the subject, but it does not seem to have gained
enough recognition.

Define
Ln(x, y, z) =

∑
σ∈Sn

xjump(σ)ydes(σ)zlsuc(σ).
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For n = 0, set L0(x, y, z) = 1.

The following theorem shows that the polynomials Ln(x, y, z) can be generated by the
grammar G in (2.3) of Dumont, that is,

G = {a→ az, z → xy, x→ xy, y → xy}.

Theorem 3.3. Let D be the formal derivative with respect to G. For n ≥ 0, we have

Dn(a) = aLn(x, y, z). (3.4)

The above theorem can be confirmed by a labeling scheme of permutations. Assume that
σ is a permutation of [n]. Consider the position after each element σi for i = 0, 1, . . . , n,
with σ0 = 0. First of all, label the position after the maximum element n by a. For the
remaining positions, if i is a jump, then label the position on the right of σi by x; if i is a left
succession, then label the position on the left of σi by z, if i is a descent and σi 6= n, label
the position on the right of σi by y. Below is an example for such a labeling:

x 2 x 6 y 3 z 4 y 1 x 5 x 8 z 9 a 7 y. (3.5)

Write ∗ for the element n+ 1 to be inserted into σ. The change of labels can be described
as follows. Assume that ∗ is to be inserted at the position between σi and σi+1, where
0 ≤ i ≤ n.

1. If ∗ is inserted at a position a, that is, σi = n, then we get n z ∗ aσi+1 in the neighbor-
hood, this operation is captured by the rule a→ az.

2. If ∗ is inserted at a position x, then we see the update of σ: σi x σi+1 → σi x ∗ a σi+1.
In the meantime, the label a after n in σ, wherever it is, will be switched to y, because
∗ is not inserted after n. This change of labels is reflected by the rule x→ xy.

3. If ∗ is inserted at a position y, since σi 6= n, the update of σ can be described by
σi y σi+1 → σi x ∗ a σi+1. In the meantime, the label a after n in the labeling of σ,
wherever it is, will be switched to y. This change of labels is governed by the rule
y → xy.

4. If ∗ is inserted at a position z, then we have the update σi zσi+1 → σi x ∗ a σi+1. In
the meantime, the label a after n in the labeling of σ, wherever it is, will be switched
to y. This change of labels is in compliance with rule z → xy.

We now have the same grammar for two occasions. Thus we reach an equidistribution.

Theorem 3.4. For n ≥ 1, the statistics (jump, des, lsuc) and the statistics (exc, drop, fix)

are equidistributed over the set of permutations of [n].
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In fact, we are going to pursue a stronger version of the above theorem, that is, a left suc-
cession analogue of the Diaconis-Evans-Graham theorem. As can be seen, while a grammar
might be sufficient to guarantee an equidistribution of two sets of statistics, it does not tell us
explicitly how to form a bijection. Nevertheless, there are occasions that the grammar could
be helpful in establishing a correspondence even with a specific constraint.

3.3 Back to interior successions

Returning to the original formulation of the joint distribution of Roselle, let Rn(x, y, z) de-
note the homogeneous form of Pn(z, x), that is,

Rn(x, y, z) =
∑
σ∈Sn

xjump(σ)ydes(σ)zsuc(σ), (3.6)

which we call the Roselle polynomials.

Using the same reasoning for the grammatical labeling for left successions together with
a slight alteration of the grammar, a grammatical calculus can be carried out for the Roselle
polynomials. Suppose that we are working with the grammar for left successions, but we
would like to avoid 1 being counted as a left succession, which is labeled by z. This require-
ment can be easily met by turning to an additional label b as a substitute of the label z. That
is to say, the rule z → xy should be recast as b → xy. For example, we should start with
the initial labeling 0b1a instead of 0z1a. As for the original labels a, x, y, z, their roles will
remain unchanged. Thus we meet with the mended grammar

G = {a→ az, b→ xy, x→ xy, y → xy, z → xy}. (3.7)

Let D be the formal derivative of G in (3.7). We have

D(ab) = abz + axy,

which is the sum of weights of the two permutations

0 b 1 z 2 a 0, 0 x 2 a 1 y 0.

In general, for n ≥ 0, the following relation holds

Rn(x, y, z) = Dn−1(ab)|a=1,b=1. (3.8)

The grammatical calculus shows that the generating function for the Roselle polynomials
is essentially a product of the generating function of Ln(x, y, z) and the generating function
of the bivariate Eulerian polynomials.

Theorem 3.5. We have

Gen(ab, t) =
a(y − x)ezt

yext − xeyt

(
x− y

1− yx−1e(x−y)t
− x+ b

)
. (3.9)
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Proof. By the Leibniz rule, we get

Gen(ab, t) =
∞∑
n=0

Dn(ab)
tn

n!
= Gen(a, t)Gen(b, t).

Since D(b) = D(x) = xy, it follows that

Gen(b, t) = Gen(x, t)− x+ b =
x− y

1− yx−1e(x−y)t
− x+ b,

which, together with Theorem 2.2, yields (3.9).

Setting a = 1, y = 1, b = x, z = xz, and treating the initial two elements 0 1 of a
permutation as an ascent, we see that

Dn−1(ab)|a=1,y=1,b=x,z=xz= x
∑
σ∈Sn

xjump(σ)(xz)suc(σ) =
∑
σ∈Sn

xasczsuc, (3.10)

which is the generating function for the joint distribution of (asc, suc) over permutations on
[n], that is,

Pn(z, x) = Dn−1(ab)|a=1,y=1,b=x,z=xz.

Moreover,

∞∑
n=0

Pn+1(z, x)
tn

n!
= Gen(ab, t)|a=1,y=1,b=x,z=xz =

x(1− x)2e(z+1)t

(ext − xet)2
,

which is in accordance with (3.3).

We finish this section with a relation between Rn(x, y, z) and Ln(x, y, z).

Theorem 3.6. For n ≥ 0, we have

Rn+1(x, y, z) = Ln(x, y, z) +
n∑
k=1

(
n

k

)
Ak(x, y)Ln−k(x, y, z), (3.11)

where for k ≥ 1, Ak(x, y) are the bivariate Eulerian polynomials.

This relation admits a combinatorial interpretation. Let T be a complete increasing bi-
nary tree on [n + 1]. Suppose that we wish to interpret Rn+1(x, y, z) in terms of complete
increasing binary trees. We may adopt the following labeling for Ln+1(x, y, z), except that
if the root of T has a z-leaf, we should label it by 1 rather than z. If this is the case, then the
subtree of T can be viewed a complete increasing tree on [n] with the labeling for Ln(x, y, z).
If the root of T has a nonempty left subtree, then this subtree does not have any z-leaves,
which can be reckoned as a labeling for the Eulerian polynomials, and so we are done.
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4 A analogue of the Diaconis-Evans-Graham theorem

The main result of this paper is a left succession analogue of the Diaconis-Evan-Graham
theorem on successions and fixed points of permutations. The grammar of Dumont can be
utilized to produce a bijection, which implies an equidistribution of the statistics (jump, des)

and (exc, drop) restricted to a given set of left successions and the same set of fixed points.
Consequences and applications will be discussed.

For a permutation σ ∈ Sn, define

M(σ) = {i | 1 ≤ i ≤ n− 1, σi + 1 = σi+1},

G(σ) = {i | 1 ≤ i ≤ n− 1, σi = i},

F (σ) = {i | 1 ≤ i ≤ n, σi = i}.

It should be stressed that the index n is excluded in the definition of G(σ). Given a subset
I ⊆ [n− 1], denote by Mn(I) the set of permutations of [n] with I being the set of (interior)
successions, and denote by Gn(I) the set of permutations σ ∈ Sn such that G(σ) = I .
Similarly, Fn(I) denotes the set of permutations σ of [n] such that F (σ) = I .

Theorem 4.1 (Diaconis-Evans-Graham). Let n ≥ 1 and I ⊆ [n−1]. Then there is a bijection
between Mn(I) and Gn(I).

For the special case I = ∅, a permutation without successions is called a relative derange-
ment. Let Dn denote the number of derangements of [n], and let Qn denote the number of
relative derangements of [n]. Roselle [9] and Brualdi [2] deduced that

Qn = Dn +Dn−1. (4.1)

A bijective proof of this relation was given in [3], appealing to the first fundamental transfor-
mation. Taking I = ∅, a permutation in Gn(I) may or may not have n as a fixed point. The
permutations in these two cases are counted by Dn−1 and Dn, respectively. Thus the I = ∅
case of the proof of the Diaconis-Evans-Graham theorem yields a combinatorial interpreta-
tion of (4.1).

Here comes the question of what happens for left successions. Define the set of left
successions of a permutations as

L(σ) = {σi | 1 ≤ i ≤ n, σi−1 + 1 = σi}.

For any I ⊆ [n], denote by Ln(I) the set of permutations σ ∈ Sn such that L(σ) = I . We
establish the following correspondence, and the proof is a grammar assisted bijection.

Theorem 4.2. For n ≥ 1 and any I ⊆ [n], there is a bijection from Ln(I) to Fn(I) that maps
the pair of statistics (jump, des) to the pair of statistics (exc, drop).
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Proof. Given a permutation σ on [n], we wish to construct a complete increasing binary T
with the (a, x, y, z)-labeling. The map can be described as a recursive procedure. For n = 1,
the permutation z1a is mapped to the complete increasing tree with one internal vertex 1.

Assume that σ = σ1σ2 · · ·σn is a permutation of [n] and that T is the tree corresponding
to σ. For 1 ≤ i ≤ n, the position i is referred to the position immediately before σi, whereas
the position n+ 1 is meant to be the position after σn.

To build a bijection, we need to inductively maintain a coordinated property of σ and T .
Besides having the same weight, they should be synchronized in a certain sense to keep the
process running till the completion of the task. More precisely, we say that the labeling of
σ is coherent with the labeling of T provided that the following conditions are satisfied. In
fact, these properties should be preserved after each update.

• If the position i in σ is labeled by x, then the vertex σi in T has a x-leaf;

• If the position i in σ is labeled by y, then the vertex σi−1 + 1 in T has a y-leaf;

• If the position i in σ is labeled by z, then the vertex σi in T has a z-leaf.

Suppose that ∗ = n + 1 is to be inserted into σ. It is necessary to find out how to update
the tree T accordingly. Now that there are n + 1 (insertion) positions for σ and there are
n+ 1 leaves for T , it suffices to define a map from the set of positions to the set of leaves of
T with the understanding that when ∗ is inserted at position, say i, T will be updated to T ′ by
turning the corresponding leaf of T into an internal vertex ∗. Denote by σ′ the permutation
produced from σ by inserting ∗ at the position i. There are four cases on the ground of the
four rules of the grammar.

1. If ∗ is inserted at a position labeled by a, we add ∗ to T at the position of the a-leaf.
This operation is consistent with the rule a→ az.

2. For a label z at the position i, by the induction hypothesis, we know that the vertex σi
in T ′ has a z-leaf, so we apply the rule z → xy to this z-leaf to update T . Notice that
when ∗ is inserted, the label a on the right of n in σ will be switched to y. In view of
the construction, this y-label corresponds to the y-leaf of ∗ in T ′. By inspection, we
find that the labeling of σ′ is coherent with the labeling of T ′.

3. When the insertion occurs at position i labeled by x, by the induction hypothesis, we
know that the vertex σi in T has a x-leaf. Then we apply the rule x → xy to this
leaf. Notice that the y-leaf of ∗ in T ′ corresponds to the y-label on the right of n by
the construction. Again, it can be checked that the labeling of σ′ is coherent with the
labeling of T ′.
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4. For a position i labeled by y, by the induction hypothesis, we know that the vertex
σi−1 + 1 in T has a y-leaf. Then we apply the rule y → xy to this leaf. In this case, the
labeling of σ′ remains coherent with the labeling of T ′.

So far we have provided a procedure to update T depending on where the element ∗ is
inserted into σ. Moreover, every stage of this procedure is reversible. The detailed examina-
tion is omitted. Notice that the grammar ensures that the map is weight-preserving, that is,
the weight of σ equals that of T .

It should be added that a left succession i is created in σ whenever a vertex σi with a left
z-leaf is created in T . Meanwhile, a left succession i is destroyed in σ whenever a z-leaf
with parent σi is destroyed. This completes the proof.

Taking the following permutation σ with 2 jumps and 1 descent as an example,

z 1 x 3 y 2 x 4 z 5 a,

where L(σ) = {1, 5}. Figure 3 illustrates how to build the corresponding trees step by step,
where a label in boldface indicates where an insertion takes place.

We remark that in principle one can reformulate the above bijection in a way without
resorting to increasing binary trees as an intermediate structure. In doing so, all we need is
a comparative scrutiny of the two recursive procedures to generate permutations. One relies
on the linear representation and the other on the cycle notation.

For n = 3, the correspondence is given in the table below. The cases when F (I) = ∅ are
not listed, such as I = {1, 2}.

I ⊆ [n] Ln(I)→ Fn(I) (jump, des)→ (exc, drop)

∅ 2 1 3→ (123)

3 2 1→ (132)

(2, 1)

(1, 2)

{1} 1 3 2→ (1)(23) (1, 1)

{2} 3 1 2→ (13)(2) (1, 1)

{3} 2 3 1→ (12)(3) (1, 1)

{1, 2, 3} 1 2 3→ (1)(2)(3) (0, 0)

We conclude with discussions about consequences of the above correspondence. Given a
subset I of [n], denote by Fn(I) the set of permutations of [n] with I being the set of fixed
points. Let Ln(I) stands for the set of permutations of [n] with I being the set of elements
whose indices are left successions.

The special case I = ∅ of Theorem 4.1 is related to the notion of a skew derangement as
termed in [3]. Returning to the definition of F (σ), as it is not required that σ(n) 6= n, we
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Permutations Trees

z 1 a

1

z a

z 1 z 2 a

1

z 2

z a

z 1 x 3 a 2 y

1

z 2

3

x y

a

z 1 x 3 y 2 x 4 a

1

z 2

3

x
4

x y

a

z 1 x 3 y 2 x 4 z 5 a

1

z 2

3

x
4

x y

5

z a

Figure 3: An example.

may regard σ as a one-to-one map f from [n] to the set {0, 1, . . . , n− 1}. In the case I = ∅,
a permutation σ is in Fn(I) if and only if f(i) 6= i for any i, that is, f is a skew derangement.
Specializing Theorem 4.2 to I = ∅, we obtain another combinatorial interpretation of (4.1),
along with the following property.

Corollary 4.3. There is a one-to-one correspondence between the set of permutations on
[n] without left successions and the set of permutations without fixed points such that the
statistics (jump, des) are transformed into the statistics (exc, drop).

Notice that a relative derangement has a left succession if and only if it begins with the
element 1. In this case, we may treat the element 1 as zero and treat the rest of the permutation
as a permutation of [n − 1]. This yields a permutation of [n − 1] without left successions.
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Thus Theorem 4.2 does offer an alternative way to establish (4.1) combinatorially. Strictly
speaking, the set of relative derangements of [n] can be divided into two classes. The first
consists of those with no left successions, as counted byDn, and the second consists of those
beginning with 1, as counted by Dn−1.

By comparing Theorem 4.1 with Theorem 4.2, we are led to a correspondence between
left successions and interior successions.

Corollary 4.4. Let I ⊆ [n − 1]. Write Ln(I) for the set of permutations of [n] with I

being the set of elements whose indices are left successions and write Mn(I) for the set of
permutations of [n] with I being the set of interior successions. Then there exists a bijection
between Ln(I) and Mn(I).

Acknowledgment. This work was supported by the National Science Foundation of
China.

References

[1] F. Brenti, Unimodal polynomials arising from symmetric functions, Proc. Amer. Math.
Soc., 108 (1990) 1133–1141.

[2] R.A. Brualdi, Introductory Combinatorics, 5th ed., Pearson/Prentice Hall, 2009.

[3] W.Y.C. Chen, The skew, relative, and classical derangements, Discrete Math., 160
(1996) 235–239.

[4] W.Y.C. Chen and A.M. Fu, A Context-free grammar for the e-positivity of the trivariate
second-order Eulerian polynomials, Discrete Math., 345 (2022) 112661.

[5] P. Diaconis, S.N. Evans and R. Graham, Unseparated pairs and fixed points in random
permutations, Adv. in Appl. Math., 61 (2014) 102–124.

[6] D. Dumont, Grammaires de William Chen et dérivations dans les arbres et arbores-
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